

Eddy DK

Programmer Guide

Ver 2.5.1.1 2010, 09.15

Revision History

Revision Date	Document Version	Pages	Description
Feb-5-2009	2.1.0.1	All	Initial release by shlee
Sep-10-2009	2.1.0.2	All	Added WiFi
Oct-14-2009	2102	11	J2 pin33 PC12 → PC13
OCI-14-2009	2,1,0,3	''	J2 pin35 PC13 → PC12
	2,1,0,3	17 10 10	J2 pin33 PC12 → PC13
		17,18,19	J2 pin35 PC13 → PC12
Oct-22-2009		18,19	J2 pin33 J9_26 → J9_33
			J2 pin34 J9_25 → J9_34
			J2 pin33 J9_24 → J9_35
Nov-23-2009	2.1.0.3	2,4,6	Added S4M
Jun-25-2010	0.1.1.1	All	Open Linux Version
Juii-25-2010	2,1,1,1	All	Added Eddy-BT
Sep-15-2010	2,5,1,1	2,9	Added Eddy-CPU v2.5

Table of Contents

Chapter	1 Introduction	5
1,1	About this document	5
1.2	Who should read this document?	
1.3	Document organization	6
1.4	Eddy-DK Related Documents	7
1.5	Technical Support	8
Chapter	2. Getting Started	g
2.1	What can you do with Eddy DK ?	g
2.2	Eddy-DK Package Contents	
2.3	Eddy-CPU v2.1 / v2.5	10
2.4	Eddy-DK v2.1	25
2.5	Eddy-S4M v2 _. 1	40
2.6	Eddy-S4M-DK v2 _. 1	50
2.7	Eddy-S4M-JiG v2.1	59
2.8	Eddy-WiFi v2.1	62
2.9	Eddy-BT v2 _. 1	64
Chapter	3. Development Environment	66
3.1	Source code directory structure	66
3.2	Language	67
3.3	Development Environment	
3.4	Installing on Windows OS	67
3.5	Installation of Cygwin	
3.6	Configuration of Windows Environment Variables	70
3.7	Installation of Toolchain	
3.8	Installation of Eddy DK Source	70
3.9	Installing on Linux	71
3.10	Installation of Toolchain	
3,11	Installation of Eddy DK Source	71
3.12	Removing Development Environment	
3.13	Removing Windows Development Environment	72
3.14	Removing Linux Development Environment	72
Chapter	4. Compiling of Application Program	73
4.1	Program Type	73
4.2	Writing Application Program	75
4.3	Writing Makefile	75
4.4	Application Program Compile	76
4.5	Compiling on Windows	76

4.6	Compiling on Linux	77
4.7	Compiling with LemonIDE	77
4.8	Running Application on Eddy	77
4.9	Uploading and Executing on Eddy	78
4.10	Execute a file on Booting of Eddy	78
Chapte	er 5. Creating Firmware	80
5.1	How to Create a Firmware	80
5.2	Firmware Upgrade	
Chapte	er 6. Library Introduction	85
6.1	Introduction	85
6.2	Makefile	
6.3	System functions	
6.4	Eddy Environment Function	
6.5	Serial functions	89
6.6	Ethernet functions	92
6.7	GPIO Functions	97
6.8	ADC Function	103
6.9	RTC Function	104
6.10	Debugging Function	105
Chapte	er 7. Eddy Software	107
7.1	Software Structure Diagram	107
7.2	Main Applications	107
7.3	eddy.c Application	108
7.4	Pinetd _. c Application	108
7.5	Other Applications	108
Chapte	er 8. Handling HTML & CGI	109
8.1	WEB Configuration	109
8.2	Example of HTML Code	109
8.3	Example CGI Code	110
Chapte	er 9. Appendix	113
9.1	System recovery via Bootloader	113
9.2	System recovery via USB	
9.3	Product Specification	
9.4	Ordering Infomation	

Chapter 1. Introduction

This chapter explains about this manual and introduces the related documents and support.

1.1 About this document

This manual explains about how a programmer can develop a customized application for Eddy module and how this application can be uploaded and executed on the module. To help programmers with this work, information on Eddy's operating system and API functions for convenient source writing is supplied.

After reading this document, a programmer can write his or her own application and execute it on the module.

1.2 Who should read this document?

This document is designed for programmers who wish to develop a new application using Eddy DK. It is strongly recommended that the programmer read this document before starting any programming work. If you are an administrator or an end user who just needs to apply the module into practical applications, you do not need to read this document. User's Guide will be helpful in that case. This manual deals with the complete process of writing source codes and making a firmware that can be uploaded and executed on Eddy module.

1.3 Document organization

Chapter 1. Introduction is a preface with general information and introductory notices.

Chapter 2. Getting Started gives brief information needed before starting programming work.

Chapter 3, Writing Application explains about the process of writing a customized application and related work...

Chapter 4. Compiling Application deals with the process of compiling your application with Makefile.

Chapter 5. Creating Firmware helps you converting a compiled application into a firmware that can be accepted by Eddy module.

Chapter 6. Library explains about the library and API functions you can use while programming and application.

Chapter 7. Eddy Software shows how to implement simple TCP/IP and serial routines using example source codes that are included in the development kit.

Chapter 8, Handling HTML & CGI provides a guide for integrating your own applications with Eddy's web interface.

Chapter 9. Appendix provides programming notes and a list of default utilities.

1.4 Eddy-DK Related Documents

The following table summarizes documents included in the Eddy-DK document set.

Document Name	Description
User Guide	Integration, configuration, and management of Eddy for the administrator
Programmer's Guide	Programmer's application development guide, including in-depth approach to compiling, linking, and creating firmware API reference is also included with a list of available functions for customized application programming
LemonIDE Manual	Guide for primary function of each tool contained in LemonIDE on Windows and Linux.
Portview User Manual	Guide for SystemBase device server management application Portview
COM Port Redirector User Manual	Guide for SystemBase COM Port Redirector
TestView User Manual	Guide for TestView application for testing Eddy serial port and lan port.

If you need brief information on Eddy or embedded device servers in general, please visit our corporate website at http://www.sysbas.com/. You can view and/or download documents related to Eddy as well as latest software and firmware updates. Available resources are as follows:

Document Name	Description		
Eddy-CPU Spec Sheet	Specifications for Eddy CPU and DK board.		
Eddy-S4M Spec Sheet	Eddy-S4M spec description		
Eddy-WiFi Spec Sheet	Eddy-WiFi module spec description		
Eddy-BT Spec Sheet	Eddy-BT module spec description		
LemonIDE Spec Sheet	integrated development environment description		
Eddy White Paper	An introductory reading for anyone new to embedded device server. Deals with background, history, market environment, and technology		

All documents are updated promptly, so check for the recent document update. The contents in these documents are subject to change without any notice in advance.

1.5 Technical Support

There are three ways you can get a technical support from SystemBase.

First, visit our website http://www.sysbas.com/ and go to Technical Support menu. There you can read FAQ and ask your own question as well.

Second, you can e-mail our technical support team. The mail address is tech@sysbas.com. Any kind of inquiries, requests, and comments are welcome.

Finally, you can call us at the customer center for immediate support. Our technical support team will kindly help you get over with the problem.

The number to call is 82-2-855-0501 (Extension number 225). Do not forget to dial the extension number after getting a welcome message.

Copyright 2007 SystemBase Co., Ltd. All rights reserved.

Homepage: http://www.sysbas.com/

Tel: +82-2-855-0501 Fax: +82-2-855-0580

1601, DaeRyung Post Tower 1, 212-8, Guro-dong, Guro-gu, Seoul, Korea

Chapter 2. Getting Started

This chapter explains about packaging and installation, and discusses key features of Eddy-DK.

2.1 What can you do with Eddy DK?

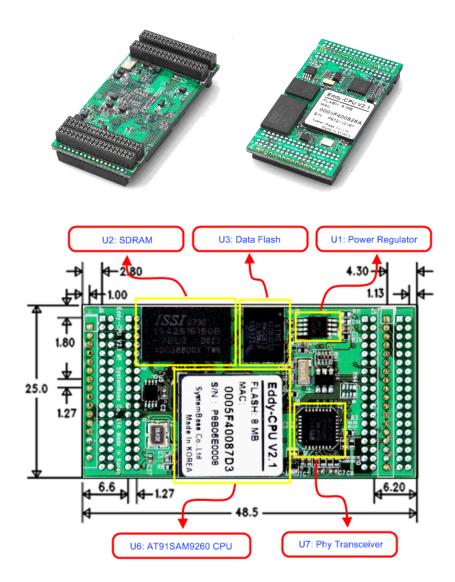
Eddy DK is designed to help programmers to develop a customized application that can be applied to Eddy module easier and faster. It has been a time-consuming and burdensome work to port an operating system and develop an application on a new hardware. Eddy module and Software Development Kit makes this work easy.

Eddy DK is different with other device servers in which it can run customized applications. Users can upload most existing socket/serial communication applications that are running on the Linux environment. This openness allows users to apply wide variety of functions into the module with relatively less restrictions.

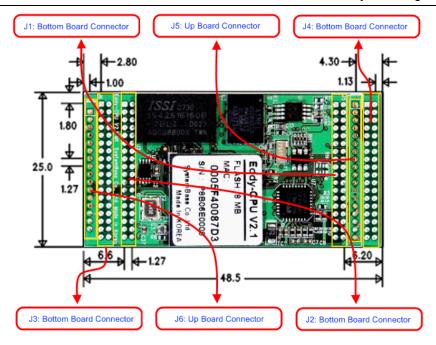
Eddy DK supports IDE (LemonIDE) and SDK environment to help programmers to execute their own applications on the module. Programmers can easily write applications using the Linux environment, with the help of SDK and example source codes. Cross-compiler running on the standard Linux environment helps your applications to run on the Eddy module, Embedded Linux on Eddy can provide stable and rapid environment for your applications.

2.2 Eddy-DK Package Contents

Eddy-DK includes Eddy module.


Eddy-DK package contains as follows. Make sure following contents are included in the Eddy Serial DK Package.

- Case of Eddy-DK (Eddy-CPU v2.1/v2.5 1ea, Eddy-DK v2.1board 1ea)
- Case of Eddy-S4M-DK (Eddy-S4M v2.1 1ea, Eddy-S4M-DK board 1ea, (Option: Eddy-S4M-JIG))
- -1EA, Serial cable
- -1EA, LAN cable
- 1EA, USB A to B Cable
- -1EA, Power adaptor
- -1EA, CD (SystemBase SDK, LemonIDE, compile environment, utilities, manuals)



2.3 Eddy-CPU v2.1 / v2.5

Eddy-CPU v2.1/v2.5 Pin Assignment

J1				
Pin	Signal Name	Pin	Signal Name	
1	PA5	2	PA4	
3	PC5	4	PC19	
5	PC21	5	PC23	
7	HDMA	8	NC	
9	HDPA	10	DDM	
11	PC26	12	DDP	
13	PC4 (RDY#)	14	PC16	
15	ICE_NTRST	16	RTCK	
17	TDO	18	TMS	
19	TDI	20	TCK	
21	3,3V	22	GND	
23	3.3V	24	GND	
25	PB29 (CTS1)	26	PB28 (RTS1)	
27	PB6 (TXD1)	28	PB7 (RXD1)	
29	A20	30	A19	
31	LAN_Speed	32	LAN_ILink	
33	LAN_RX-	34	LAN_RX+	
35	LAN_TX-	36	LAN_TX+	

J2				
Pin	Signal Name	Pin	Signal Name	
1	A15	2	A14	
3	A13	4	A12	
5	A11	5	A10	
7	A9	8	A8	
9	A7	10	A6	
11	A5	12	A4	
13	A3	14	A2	
15	A1	16	A0	
17	PC9	18	NWE	
19	FPG	20	NRD	
21	GND	22	3.3V	
23	GND	24	3.3V	
25	D7	26	D6	
27	D5	28	D4	
29	D3	30	D2	
31	D1	32	D0	
33	PC13	34	JTAGSEL	
35	PC12	36	NC	

	J3				
Pin	Signal Name	Pin	Signal Name		
1	PID0	2	PID1		
3	PID2	4	PID3		
5	PID4	5	GND		
7	PC14	8	PC17		
9	PC18	10	PC8 (RTS3)		
11	PC20	12	PC10 (CTS3)		
13	PA22	14	PC15 (IRQ1)		
15	PB8	16	PB9 (RXD2)		
17	PB10	18	PB11(RXD3)		
19	PC0	20	PC1 (AD1)		
21	PC2	22	PC3 (AD3)		
23	PB14 (DRXD)	24	PB15 (DTXD)		
25	GND	26	GND		
27	BMS	28	NRST		
29	PB23 / DCD0	30	PB5 / RXD0		
31	PB4 / TXD0	32	PB24 / DTR0		
33	PB22 / DSR0	34	PB26 / RTS0		
35	PB27 / CTS0	36	PB25 / RI0		

Pin					
	Signal Name		Signal Name		
1	PB12	2	PB13		
3	PB30	4	PB31		
5	PB0	5	PC22		
7	PB1	8	PB16		
9	PB2	10	PB17		
11	PB3	12	PB18		
13	BHDM	14	PB19		
15	BHDP	16	PB20		
17	A16	18	PB21		
19	A17	20	A18		
21	D8	22	D9		
23	D10	24	D11		
25	D12	26	D13		
27	D14	28	D15		
29	TWD	30	TCK		
21	31 NANDOE 3	20	NAND_CLE /		
اد		32	A22		
22	NANDWE	34	NAND_ALE /		
33	NANDWE		A21		
35	NC	36	NC		

	J5				
Pin	Signal Name				
1	PB0				
2	PB1				
3	PB2				
4	PB3				
5	3,3V				
6	3,3V				
7	BHDM, USB Host Data(-)				
8	BHDP, USB Host Data(+)				
9	PA31 / TXD4				
10	PA30 / RXD4				
11	NRST				
12	GND				
13	GND				
14	PA9 / WPID0				
15	PC6 / WPID1				
16	PC7 / WPID2				
17	NC				
18	NC				

	J6				
Pin	Signal Name				
1	NC				
2	NC				
3	3 <u>.</u> 3V				
4	3.3V				
5	PC25 / BT_Factory				
6	PB10 / TXD3				
7	PB11 / RXD3				
8	PC8 / RTS3				
9	PC10 / CTS3				
10	PC24 / BT_MODE				
11	NRST				
12	GND				
13	GND				
14	NC				
15	NC				
16	NC				

J1 Specifications

J1					
Pin	Signal Name		Pin	Signal Name	
1	PA5		2	PA4	
3	PC5		4	PC19	
5	PC21		5	PC23	
7	HDMA		8	NC	
9	HDPA		10	DDM	
11	PC26		12	DDP	
13	PC4 (RDY#)		14	PC16 (nRESET)	
15	ICE_NTRST		16	RTCK	
17	TDO		18	TMS	
19	TDI		20	TCK	
21	3.3V		22	GND	
23	3.3V		24	GND	
25	PB29 (CTS1)		26	PB28 (RTS1)	
27	PB6 (TXD1)		28	PB7 (RXD1)	
29	A20		30	A19	
31	LAN_Speed		32	LAN_ILink	
33	LAN_RX-		34	LAN_RX+	
35	LAN_TX-		36	LAN_TX+	

J1 Pin Description

Pin No	Name	DK v2.1 Pin No	Expansion Header Pin No	Description		
				Peripheral A : CTS2	UART #2 Clear to Send Signal	
					Disabled _.	
1	PA5	J10_1	J4_2	Peripheral B : MCBD1	Data Flash connected with SPI0 is used for Eddy-CPU v2.1/v2.5. For	
				Feripheral B. MOBD1	this reason SPI0 and MCDB0, MCDB3, and MCCDB signals,	
					multiplexing, cannot be used, thus Multimedia Card Slot B is disabled.	
2	PA4	J10 2	J4_1	Peripheral A : RTS2	UART #2 Request to Send Signal	
۷	1 //4	010_2	04_1	Peripheral B : MCDB2	Disabled _.	
3	PC5	J10 3	J4_12	Peripheral A : A24	External Address Bus	
3	F 03	010_3	04_12	Peripheral B : SPI1_NPCS1	SPI1(Serial Peripheral Interface) Peripheral Chip Select 1	
4	PC19	J10_4	J4_24	Peripheral A : A24	Multimedia Card Slot B Data	
4	POIS	J10_4	J4_24	Peripheral B : SPI1_NPCS2	SPI1(Serial Peripheral Interface) Peripheral Chip Select 2	
5	PC21	J10_5	J4_26	Peripheral A : D21	External Data bus	
5	PU21	310_3	J4_20	Peripheral B : EF100	Ethernet(WAN) Force 100Mbit/sec.	
6	PC23	J10_6	J4_28	Peripheral A : D23	External Data Bus	
7	HDMA	J10_7	J1_27		USB Host Port A Data -	
8	NC	J10_8			Not Connect	
9	HDPA	J10_9	J1_29		USB Host Port A Data +	
10	DDM	J10_10	-		USB Device Port Data -	
11	PC26	J10_11	-	D26	External Data Bus	
12	DDP	J10_12	-		USB Device Port Data +	
	PC4			Eddy-DK v2,1 : RDY#(OUT)	Ready signal Output signal for CPU operation status	
13	13 (RDY#) J	J10_13	J4_11	Peripheral A : A23	External Address Bus	
	(ND1#)			Peripheral B : SPI1_NPCS2	SPI1(Serial Peripheral Interface) Peripheral Chip Select 2	
14	PC16 (nRESET)	J10_14	J4_21	Eddy-DK v2,1 : nRESET#(IN)	Polling Input signal continually from External Reset key, implement as	

Less than 5 seconds: General reset function.

					More than 5 seconds: Factory Default function.		
				Peripheral A : D16	External Data Bus		
					Disabled		
				Peripheral B : SPI0_NPCS2	SPI0_SPCK, SPI0_MISO, and SPI0_MOSI signals for SPI0 are disabled		
					as they are not connected externally.		
15	ICE_NTRST	J10_15	J7_3		ICE Test Reset Signal		
16	RTCK	J10_16	J7_11		Return Test Clock		
17	TDO	J10_17	J7_13		Test Data Out		
18	TMS	J10_18	J7_7		Test Mode Select		
19	TDI	J10_19	J7_5		Test Data In		
20	TCK	J10_20	J7_9		Test Clock		
21	3.3V			3.0V to	3.6V power input		
22	GND				Ground		
23	3.3V			3.0V to	3.6V power input		
24	GND				Ground		
25	PB29	J10_25	10. 20	Peripheral A : CTS1	USART1 Clear To Send		
23	PB29	J10_25	J2_30	Peripheral B : ISI_VSYNC	Image Sensor Vertical Synchronization		
26	PB28	J10_26	J2_29	Peripheral A : RTS1	USART1 Request To Send		
20	F D20	010_20	02_29	Peripheral B : ISI_PCK (IN)	Image Sensor Pixel Clock Provided by the Image Sensor		
27	PB6	J10_27	J2_7	Peripheral A: TXD1	USART1 Transmit Data		
21	1 00	010_27	02_1	Peripheral B : TCLK1	Timer Counter ch1 External CLK IN		
28	PB7	J10_28	J2_8	Peripheral A: RXD11	USART1 Receive Data		
20	1 57	010_20	02_0	Peripheral B : TCLK2	Timer Counter ch2 External CLK IN		
	Address Bus						
29	A20	J10-29	J1_31	Address Bus			
30	30 A19 J10_30 J1_32 Address Bus						
	Ethernet 10/100 (Auto MDI/MDIX)						

						LAN connect	tion speed	
		140.04		Speed	Pin State	LED Definition		
31	LED_Speed	J10_31	-	10Base-T	Н	OFF		
				100Base-TX	L	ON		
						LAN connect	tion status	
				Link/Activity	Pin State	LED Definition		
32	LED_Link	J10_32	-	No Link	Н	OFF		
				Link	L	ON		
				Activity	Toggle	Blinking		
33	LAN_RX-	J10_33	-	CPU L	H부 Ethernet PH	Y(WAN)의 Physica	I receive or transmit signal (- differential)	
34	LAN_RX+	J10_34	-	CPU 내부 Ethernet PHY(WAN)의 Physical receive or transmit signal (+ differential)				
35	LAN_TX-	J10_35	-	Physical transmit of CPU Internal Ethernet PHY(WAN) or receive signal (- differential)				
36	LAN_TX+	J10_36	-	Physical	Physical transmit of CPU Internal Ethernet PHY(WAN) or receive signal (+ differential)			

J2 Specifications

Connect USB cable to J1 while the jumper is connected to J2, so that applications can be compiled, linked, created, and uploaded to the Eddy-CPU module. (Please refer to Programmer Guide for more information.)

	J2								
Pin	Signal Name	Pin	Signal Name						
1	A15	2	A14						
3	A13	4	A12						
5	A11	5	A10						
7	A9	8	A8						
9	A7	10	A6						
11	A5	12	A4						
13	A3	14	A2						

15	A1	16	A0
17	PC9	18	NWE
19	FPG	20	NRD
21	GND	22	3.3V
23	GND	24	3.3V
25	D7	26	D6
27	D5	28	D4
29	D3	30	D2
31	D1	32	D0
33	PC13	34	JTAGSEL
35	PC12	36	NC

J2 Pin Description

Pin No	Name	DK v2.1 Pin No	Expansion Header Pin No	Description		
1~16	A[15:0]	J9_1	J3_4-J3_20		External Address Bus 0-15 (0 at reset)	
1~10	A[15.0]	-J9_16	03_4-03_20	DK is directly connect	ed with CPU and external connecter (J3) is connected by buffer.	
				Peripheral A : NCS5	External device Chip Select 5.	
17	PC9	J9_17	J4_14	reliplieral A : NOSS	256MB memory area addressable, active low	
				Peripheral B : TIOB0	Timer Counter ch0 I/O Line B	
18	NEW	J9_18	J1_21	E>	kternal device Write Enable signal, active low	
					For Flash Programming	
19	FPG	J9_19	-	You can program Data Flas	sh in Eddy CPU v2.1/v2.5 via USB. Refer to 2.4.2.3 S6:NAND Flash &	
				D	ata Flash Chip Select for further information.	
20	NRD	J9 20	J1 23	Ex	kternal device Read Enable signal, active low	
		_	_	Ţ,		
21, 23	GND			Ground		
22, 24	3.3V			3.0V to 3.6V power input		
25~32	D[7:0]	J9_25	J3_29 - J3_36	External Data Bus 0-7		

		- J3_32		DK is directly connected with CPU and external connecter (J3) is connected by buffer. You should enable PC13(NCS6: Chip Select 6) for working buffer, if you reset, it becomes Pulled-up input.		
				Edd-DK v2.1 : NCS6	Data Bus connected with external header can be used when NCS6 is enabled.	
33	PC13	J9_33	J4_18	Peripheral A : FIQ	Fast Interrupt Input	
				Peripheral B : NCS6	External device Chip Select 6 256MB memory area addressable, active low	
34	JTAGSEL	J9_34	-	•	be used by connecting pin34 and 36(J14 connection). This pin should nen using ICE (In-Circuit Emulator) or in normal operation status.	
				Peripheral A : IRQ0	External Interrupt Input 0	
35	PC12	J9_35	J4_17	Peripheral B : NCS7	External device Chip Select 7. 256MB memory area addressable, active low	
36	NC	Not Connect				

J3 Specifications

	J3								
Pin	Signal Name	Pin	Signal Name						
1	PID0	2	PID1						
3	PID2	4	PID3						
5	PID4	5	GND						
7	PC14	8	PC17						
9	PC18	10	PC8 (RTS3)						
11	PC20	12	PC10 (CTS3)						
13	PA22	14	PC15 (IRQ1)						

15	PB8	16	PB9 (RXD2)
17	PB10	18	PB11(RXD3)
19	PC0	20	PC1 (AD1)
21	PC2	22	PC3 (AD3)
23	PB14 (DRXD)	24	PB15 (DTXD)
25	GND	26	GND
27	BMS	28	NRST
29	PB23 / DCD0	30	PB5 / RXD0
31	PB4 / TXD0	32	PB24 / DTR0
33	PB22 / DSR0	34	PB26 / RTS0
35	PB27 / CTS0	36	PB25 / RI0

J3 Pin Description

Pin No	Name	DK v2.1 Pin No	Expansion Header Pin No	Description			
1-5	PID[4:0]	J8_1		P	Product ID only used by the manufacturer.		
1-5	FID[4.0]	~J8_5	_		Please do not work on these pins.		
6,25,26	GND			Ground			
7	PC14	J8_7	J4_19	Peripheral A: NCS3	External Device Chip Select 3		
'	7 PC14 Jo	30_1	04_19	Peripheral B : IRQ2	External Interrupt Input 2		
				Peripheral A : D17	External Data Bus		
8	PC17	J8_8	J4_22	Peripheral B:	Disabled		
				SPI0_NPCS3	Disabled		
				Peripheral A : D18	External Data Bus		
9	PC18	J8_9	_9 J4_23	Peripheral B:	CDI1/Carial Darinharal Interface) Darinharal Chin Calcat 1		
				SPI1_NPCS1	SPI1(Serial Peripheral Interface) Peripheral Chip Select 1		
10	PC8	J8_10	J4_13	Peripheral A: NCS4	External Device Chip Select 4		

				Peripheral B : RTS3	USART3 Request to Send						
				Peripheral A : D20	External Data Bus						
11	PC20	J8_11	J4_25	Peripheral B:	CDI1/Covial Davinhaval Interface) Davinhaval Chin Coloct 2						
				SPI1_NPCS3	SPI1(Serial Peripheral Interface) Peripheral Chip Select 3						
12	PC10	J8_12	J4 15	Peripheral A : A25	External Address Bus						
12	FOIU	00_12	04_10	Peripheral B : CTS3	USART3 Clear to Send						
13	PA22	J8_13	-		Digital I/O Input 4						
14	PC15	J8_14	J4_20	Peripheral A : NWAIT	External Wait Signal Input						
14	F013	00_14	J4_2U	Peripheral B : IRQ1	External Interrupt Input 2						
15	PB8	J8_15	J2_9	Peripheral A: TXD2	UART2 Transmit Data						
16	PB9	J8_16	J2_10	Peripheral A: RXD2	UART2 Receive Data						
17	PB10	10 17	J8_17	10 17	10 17	10 17	10 17	10 17	J2_11	Peripheral A: TXD3	UART3 Transmit Data
17	PBIU	JO_17	J2_11	Peripheral B : ISI_D8	Image Sensor Data 8						
18	PB11	J8_18	J2_12	Peripheral A: RXD3	UART3 Receive Data						
10	FBII	00_10	00_10	00_10	UZ_1Z	Peripheral B : ISI_D9	Image Sensor Data 9				
19	PC0	J8_19	J4_7	Peripheral A : AD0	Analog to Digital Converter Input Ch0						
19	POU	30_19	J4_ <i>I</i>	Peripheral B : SCK3	USART3 Serial Clock						
20	PC1	J8_20	J4_8	Peripheral A : AD1	Analog to Digital Converter Input Ch1						
20	FOI	JO_ZU	J4_0	Peripheral B : PCK0	Programmable Clock Output 0						
21	PC2	J8_21	J4_9	Peripheral A : AD2	Analog to Digital Converter Input Ch2						
21	1 02	00_21	04_9	Peripheral B : PCK1	Programmable Clock Output 1						
				Peripheral A : AD3	Analog to Digital Converter Input Ch3						
22	PC3	J8_22	J4_10	Peripheral B : SPI1 NPCS3	SPI1(Serial Peripheral Interface) Peripheral Chip Select 3						
23	PB14	J8_23	J2_15	Peripheral A : DRXD	Debug Receive Data						
24	PB15	J8_24	J2_16	Peripheral A : DTXD	Debug Transmit Data						
				Boot Mode Select signal							
27	BMS			BMS = 1, Boot on Embedded ROM							
1					BMS = 0, Boot on External Memory						

28	NRST	J8_28	J1_20	External device Reset signal, active low signal		
29	PB23	J8 29	J4 28	Peripheral A : DCD0	USART0 Data Carrier Detection	
29	F B 2 3	J0_29	J4_20	Peripheral B : ISI_D3	Image Sensor Data 3	
30	PB5	J8_30	J2_6	Peripheral A: RXD0	USART0 Receive Data	
31	PB4	J8_31	J2_5	Peripheral A: TXD0	USART0 Transmit Data	
32	PB24	J8_32	J2_25	Peripheral A: DTR0	USART0 Data Terminal Ready	
32	F D24	Jo_32	02_23	Peripheral B : ISI_D4	Image Sensor Data 4	
33	PB22	10 22	J8_33	J2 23	Peripheral A : DSR0	USART0 Data Set Ready
33	FDZZ	00_00	J0_JJ J2_ZJ	Peripheral B : ISI_D2	Image Sensor Data 2	
34	PB26	J8_34	J2 27	Peripheral A : RTS0	USART0 Request To Send	
34	F D20	00_54	02_21	Peripheral B : ISI_D6	Image Sensor Data 6	
35	PB27	J8 35	J2 28	Peripheral A : CTS0	USART0 Clear To Send	
33	PD21 J0_33	00_00	J0_SS J2_28	Peripheral B : ISI_D7	Image Sensor Data 7	
36	PB25	J8_36	J2_26	Peripheral A : RI0	USART0 Ring Indicator	
30	PD25 J6		Jo_30	_30	Peripheral B : ISI_D5	Image Sensor Data 5

J4 Specifications

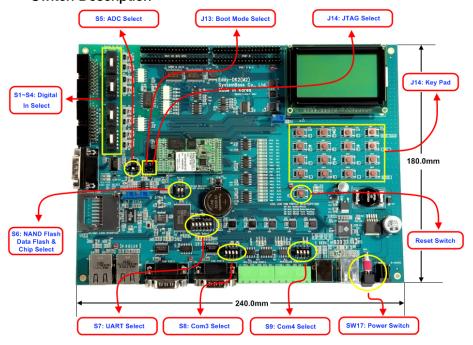
J4						
Pin	Signal Name	Pin	Signal Name			
1	PB12	2	PB13			
3	PB30	4	PB31			
5	PB0	5	PC22			
7	PB1	8	PB16			
9	PB2	10	PB17			
11	PB3	12	PB18			
13	BHDM	14	PB19			
15	BHDP	16	PB20			
17	A16	18	PB21			
19	A17	20	A18			
21	D8	22	D9			
23	D10	24	D11			
25	D12	26	D13			
27	D14	28	D15			
29	TWD	30	TCK			
31	NANDOE	32	NAND_CLE / A22			
33	NANDWE	34	NAND_ALE / A21			
35	NC	36	NC			

J4 Pin Description

Pin No	Name	DK v2.1 Pin No	Expansion Header Pin No	Description		
1	PB12	J11_1	J2_17	Peripheral A: TXD5	USART5 Transmit Data	
•	1 012	011_1	02_17	Peripheral B : ISI_D10	Image Sensor Data 10	
2	PB13	J11_2	J2_18	Peripheral A: RXD5	USART5 Receive Data	
۷	FDIO	011_2	02_10	Peripheral B : ISI_D11	Image Sensor Data 11	
				Peripheral A : PCK0	Programmable Clock Output 0	
3	PB30	J11_3	J2_31	Peripheral B : ISI_HSYNC	Image Sensor Horizontal Synchronization	
4	PB31	J11_4	J2_32	Peripheral A : PCK1	Programmable Clock Output 1	
5	PB0	J11_5	J2_2	Peripheral A : SPI1_MISO	SPI1(Serial Peripheral Interface) Master In Slave Out	
				Peripheral B : TIOA3	Timer Counter ch3 I/O Line A	
6	PC22	J11 6	J4_27	Peripheral A: D22		
b	F 022	311_0	J4_21	Peripheral B : TCLK5	Timer Counter ch5 External CLK IN	
7	PB1	J11_7	J2_3	Peripheral A : SPI1_MOSI		
				Peripheral B : TIOB3	Timer Counter ch3 I/O Line B	
8	PB16	J11_8	J2_17	Peripheral A : TK0	SSC Transmit Clock	
0	FDIO	311_0	02_17	Peripheral B : TCLK3	Timer Counter ch3 External CLK IN	
9	PB2	J11_9	J2_4	Peripheral A : SPI1_SPCK	SPI1(Serial Peripheral Interface) Serial Clock	
				Peripheral B : ISI_D3	Image Sensor Data 3	
10	PB17	J11_10	J2_18	Peripheral A : TF0	SSC Transmit Frame Sync	
10	1017	011_10	02_10	Peripheral B : TCLK4	Timer Counter ch4 External CLK IN	
11	PB3	J11_11	J2_5	Peripheral A : SPI1_NPCS0	SPI1(Serial Peripheral Interface) Peripheral Chip Select 0	


				Peripheral B : TIOA5	Timer Counter ch5 I/O Line A		
				Peripheral A : TD0	SSC Transmit Data		
12	PB18	J11_12	J2_19	Peripheral B : TIOB4	Timer Counter ch4 I/O Line B		
13	HDMB	J11_13	J1_28	Felipheral B : 11004	USB Device Port Data -		
13	ПОМВ	311_13	J1_20	Davish such A - DD0			
14	PB19	J11_14	J2_20	Peripheral A : RD0	SSC Receive Data		
				Peripheral B : TIOB5	Timer Counter ch5 I/O Line B		
15	HDPB	J11_15	J1_30		USB Device Port Data +		
16	PB20	J11 16	J2_21	Peripheral A: RK0	SSC Receive Clock		
10	1 020	011_10	02_21	Peripheral B: ISI_D0	Image Sensor Data 0		
17	A16	J11_17	J3_3		External Address Bus		
10	DD04	111 10	10.00	Peripheral A: RF0	SSC Receive Frame Sync		
18	PB21	J11_18	J2_22	Peripheral B : ISI_D1	Image Sensor Data 1		
19	A17	J11_19	J3_2	Fortament Address Bore			
20	A18	J11_20	J3_1	External Address Bus			
					External Data Bus 8-15		
	D. F.O. 1 = 3	J11_21	J3_28	DK is directly connected	d with CPU and external connecter (J3) is connected by buffer.		
21-28	D[8:15]	~J11 28	~J3 21	PC13(NCS6 : Chip Sele	ect 6) should be enabled for working buffer, if it is reset, it work		
			_	, i	as Pulled-up input.		
29	TWD	J11_29	J4_3	Two-wire	e Serial Data. This pin cannot be used for GPIO.		
30	TWCK	J11_30	J4_4	Two-wire	e Serial Data. This pin cannot be used for GPIO.		
31	NANDOE	J11_31	-		NAND Flash Output Enable		
				Address Bus			
32	A22	J11_32	J1_29	DK is directly connected with CPU and external connecter (J3) is connected by buffer.			
33	NANDWE	J11_33	-	NAND Flash Write Enable			
34	A21	J11_34	J1_30	Address Bus			
35,36	NC			N	lot Connect		

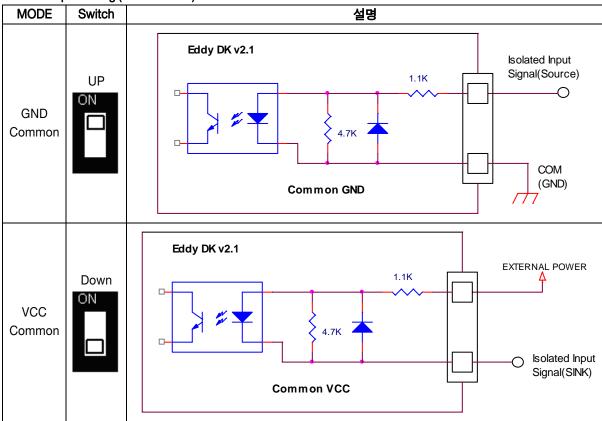
2.4 Eddy-DK v2.1


2.4.1 Modules' Locations

NOTE

Ensure that the input power supply for Eddy Serial DK is from 9V to 48V with 500 mA (or higher).

2.4.2 Switch Description



2.4.2.1. S1~S4: Digital In Select

It is possible to select the Distal Input mode with this switch (S1 ~ S4). In order to use VCC Common Mode, switch down, and to use GNC Common Mode switch up refer to below feature.

This below schematic is just for reference, So you should make you own schematic with the current and voltage that you want.

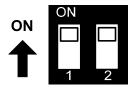
Common Input Setting (Switch S1~S4)

2,4,2,2, S5: ADC Select

You can choice the GPIO and ADC function with this switch. In order to use the ADC device, you should switch off. And In order to use the GPIO function, you should switch on.

SW Off : ADC mode SW ON : GPIO mode

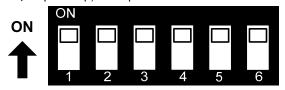
PIN name	Fuction	Discription	1/0
PC0	ADC0	Temp. Sensor Input(LM50), RN: U22	IN



PC1	ADC1	Lux. Sensor Input(BH1600), RN: U26	IN
PC2	ADC2	Temp. Sensor Input(TMP300), RN: U24	IN
PC3	ADC3	N/A	IN

^{*} RN = Reference Number

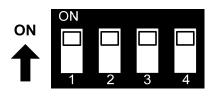
2,4,2,3, S6: NAND Flash & Data Flash Chip Select


This switch is Nand Flash & Data Flash Chip select switch. This switch is needed in firmware Programming.

Flash Prog	Flash Programming & Booting device Selection				
Switch No 1	Switch No 2	Operation description			
OFF	OFF	For Flash Programming This setting is needed in firmware Programming, refer to 9.2 System recovery via USB			
OFF	ON	Boot from Data Flash.			
ON	OFF	Boot from Nand Flash			
ON	ON	Boot from Data Flash or Nand Flash which have bootloader, if Both devices have the bootloader, algorithm in CPU select the bootloader of Data Flash. (Reference: CPU Datasheet 13 장 AT91SAM9260 Boot Program)			

2.4.2.4. S7:UART Select

In order to test Serial Port, UART Select Switches are pulled down. It means that UARTs in CPU are connected to Serial Port. If switches are pulled up, GPIO Ports are enabled and LEDs are controlled by GPIO Ports. And if Switch No.6 is pulled up, GPIO ports are connected with the Expansion Headers.



Serial Por	Serial Port & LED					
Switch	Switch	Down Position(OFF)	UP Position(ON)			
Bank	No	Serial Port Test	GPIO TEST (High: LED On)			
		UART#0 TEST	GPIO (PB4, PB5, PB26, PB27) ports are			
	1	UART#0의 TXD, RXD, RTS, CTS	connected with the GPIO LED of DK			
		signals are connected with UART#0	board and disconnected with the			
		RS232 driver IC.	UART#0 RS232 driver IC.			
		UART#0 TEST	GPIO (PB24, PB22, PB23, PB25) ports			
	2	UART#0의 DTR, DSR, DCD, RI signals	are connected with the GPIO LED of DK			
	۷	are connected with UART#0 RS232	board and disconnected with the			
		driver IC.	UART#0 RS232 driver IC.			
	3	UART#1 TEST	GPIO (PB6, PB7, PB28, PB29) ports are			
		UART#1 의 TXD, RXD, RTS, CTS	connected with the GPIO LED of DK			
		signals are connected with UART#1	board and disconnected with the			
		RS232 driver IC.	UART#1 RS232 driver IC.			
S7	4	UART#2 TEST	GPIO (PB8, PB9, PA4, PA5) ports are			
		UART#2 의 TXD, RXD, RTS, CTS	connected with the GPIO LED of DK			
	7	signals are connected with UART#2	board and disconnected with the			
		RS422/485 driver IC.	UART#2 RS422/485 driver IC.			
		UART#3 TEST	GPIO (PB10, PB11, PC8, PC10) ports			
	5	UART#3 의 TXD, RXD, RTS, CTS	are connected with the GPIO LED of DK			
		signals are connected with UART#3	board and disconnected with the			
		RS422/485 driver IC.	UART#3 RS422/485 driver IC.			
			Connect to Expansion Header			
		For Serial Port & GPIO Test	UART#0~#3 and GPIO LEDs are			
	6	Serial Port and GPIO LED of DK board	disconnected with the Eddy-CPU board			
		are enabled.	and directly connected with the			
			Expansion Header(J2, J4)			

2.4.2.5. S8:COM3 & S9: COM4 Select

COM Port #3 and COM Port #4 set the RS422/RS485 mode.

COM PORT#3, #4 settings						
Switch Bank	Switch No	Down Position(OFF)	UP Position(ON)			
S8 Port#3	1	RS485 Half-Duplex mode	RS422 Full-Duplex mode			
	2	RS422(RX enabled) RS485 echo-mode	RS485 non echo-mode			

	3	RS422 Termination Resistor not connected	RS422 Termination Resistor Connected
	4	RS485 Termination Resistor not connected	RS422 Termination Resistor Connected
	1	RS485 Half-Duplex mode	RS422 Full-Duplex mode
S9	2	RS422(RX enabled) RS485 echo-mode	RS485 non echo-mode
Port#4	3	RS422 Termination Resistor not connected	RS422 Termination Resistor Connected
	4	RS485 Termination Resistor not connected	RS422 Termination Resistor Connected

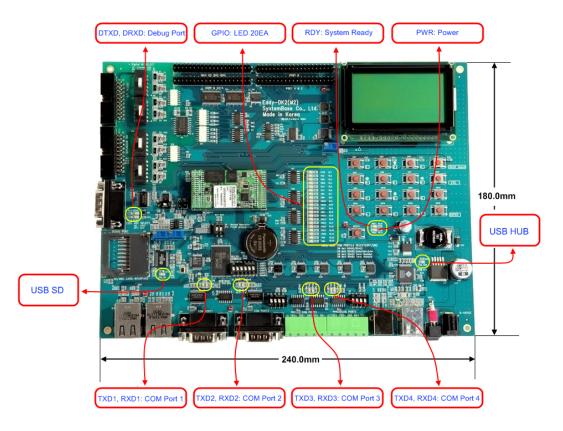
2.4.2.6. SW1~SW16: Key Pad

Key Pad of DK board are consisted with the 4x4 matrix. GPIOs are set to Input mode to read the Key value and Key 2, 4, 6, 8 also have the \triangle (UP), \checkmark (DN), \checkmark (LEFT), \blacktriangleright (RIGHT) direction function for LCD menu.

P10-P17	4x4 Key matrix	I/O
PB20	First Row line	IN
PB21	Second Row line	IN
PB30	Third Row line	IN
PB31	Forth Row line	IN
PC20	First Column line from left	IN
PC21	Second Column line from left	IN
PC22	Third Column line from left	IN
PC23	Fourth Column line from left	IN

2.4.2.7. SW17: Power

In order to power up, pull up this switch.



2,4,2,8, Reset1: Reset

Pin name	Function	Discription	1/0
PC16	nRESET	Polling Input signal continually from External Reset key, implement as below with checking the constant time of "Low." Less than 5 seconds: General reset function. More than 5 seconds: Factory Default function.	IN

2.4.3 LED Description

2.4.3.1. GPIO LED

Eddy-CPU v2.1/v2.5 supports Max 56 GPIO ports. DK board has 20 GPIO LEDs of all GPIO to test. This GPIO LEDs are controlled by UART select switches (refer to 2.4.2.4 UART Select)

PIN name	Function	Discription	I/O
PC10	CTS3	UART #3 Clear to Send	Ι
PC8	RTS3	UART #3 Request to Send	0
PB11	RXD3	UART #3 Receive Data	1
PB10	TXD3	UART #3 Transmit Data	0

PA5	CTS2	UART #2 Cleat to Send	I
PA4	RTS2	UART #2 Request to Send	0
PB9	RXD2	UART #2 Receive Data	I
PB8	TXD2	UART #2 Transmit Data	0
PB29	CTS1	UART #1 Cleat to Send	I
PB28	RTS1	UART #1 Request to Send	0
PB7	RXD1	UART #1 Receive Data	I
PB6	TXD1	UART #1 Transmit Data	0
PB25	RI0	UART #0 Ring Indicator	I
PB23	DCD0	UART #0 Data Carrier Detection	I
PB22	DSR	UART #0 Data Set Ready	0
PB24	DTR0	UART #0 Data Terminal Ready	I
PB27	CTS0	UART #0 Clear to Send	I
PB26	RTS0	UART #0 Request to Send	0
PB5	RXD0	UART #0 Receive Data	I
PB4	TXD0	UART #0 Transmit Data	0

41,2 DC Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
lo	Output Current	PA0-PA31 PB0-PB31 PC0-			16	
		PC3				
		PC4 - PC31 in 3.3V range			2*	mA
		PC4 - PC31 in 1.8V range			4	

^{*} Eddy DK v2.1 has 3.3V range, so PC4-PC31 PIO is set to 2mA. (Refer to CPU Datasheet의 41.2 DC characteristics)

2.4.3.2. Power, Ready LED

System Ready (RDY): Indicates that the system is operating normally. (Normal: LED blinks) Power (PWR): Indicates that the 5 V power is being supplied. (Supplying power: Red LED ON)

2.4.3.3. Debug Port LED

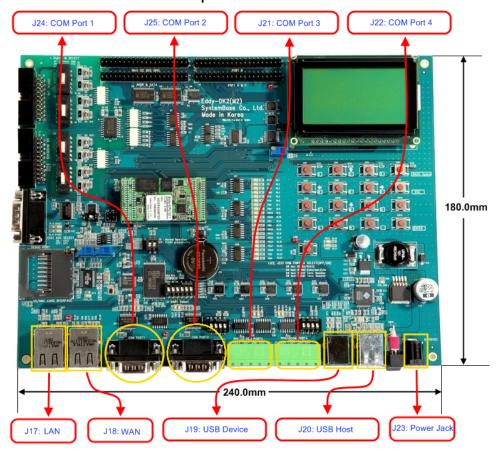
DTXD (Debug Port Transmit Dta LED): Shows transmission status of the Debug Port. DRXD (Debug Port Receive Data LED): Shows reception status of the Debug Port.

2.4.3.4. COM Port 1 LED

COM Port 1 Transmit LED: Shows transmission status of COM1 Port.
COM Port 1 Receive LED: Shows reception status of COM1 Port.

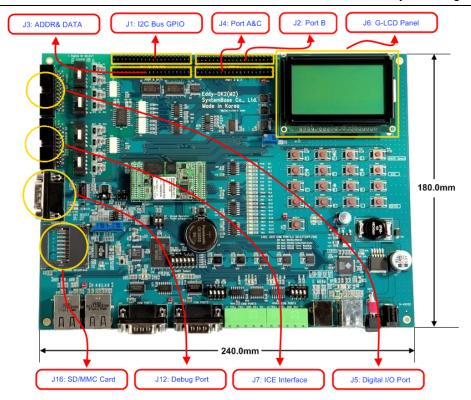
2.4.3.5. COM Port 2 LED

COM Port 2 Transmit LED: Shows transmission status of COM2 Port.
COM Port 2 Receive LED: Shows reception status of COM2 Port.

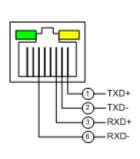

2,4,3,6, COM Port 3 LED

COM Port 3 Transmit LED: Shows transmission status of COM3 Port. COM Port 3 Receive LED: Shows reception status of COM3 Port.

2,4,3,7, COM Port 4 LED

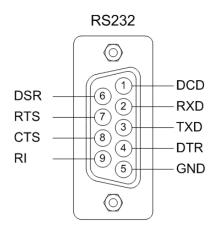

COM Port 4 Transmit LED: Shows transmission status of COM4 Port.
COM Port 4 Receive LED: Shows reception status of COM4 Port.

2.4.4 External Device Interface Description



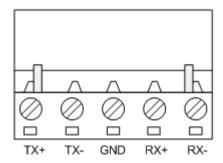
2.4.4.1. WAN & LAN Interface

WAN & LAN Port automatically recognizes Cross/ Direct (auto MDIX)


Pin	Signal	Description
1	TXD+	Transmit Data +
2	TXD-	Transmit Data -
3	RXD+	Receive Data +
6	RXD-	Receive Data -
LED		Description
Left Green		Upon 100BaseT link, it lights
		Upon 10BaseT link, it off
		Default Lighte When the data is cent or

Right Yellow Default Lights, When the data is sent or received, it blinks.

2,4,4,2, COM Port 1 & COM Port 2



DB9 Male (COM Port 1, 2 공통)

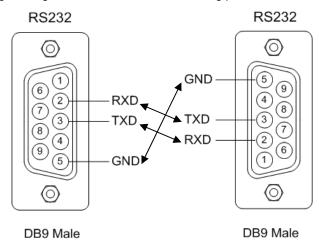
RS232

Pin	Signal	Description
1	DCD	Data Carrier Detection (Input) (COM Port 1 only)
2	RXD	Receive Data (Input)
3	TXD	Transmit Data (Output)
4	DTR	Data Terminal Ready (Output) (COM Port 1 only)
5	GND	Ground
6	DSR	Data Set Ready (input) (COM Port 1 only)
7	RTS	Request to Send (Output)
8	CTS	Clear to Send (Input)
9	RI	Ring Indicator (Input)

2,4,4,3, COM Port 3 & COM Port 4

RS422 Full Duplex

Pin	Signal	Description	
1	TXD+	Transmit differential data positive (Output)	
2	TXD-	Transmit differential data negative (Output)	
3	GND	Ground	
4	RXD+	Receive differential data positive (Input)	
5	RXD-	Receive differential data negative (input)	



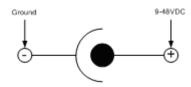
RS485 Half Duplex

Pin	Signal	Description
1	TRX+	Transmit/Receive differential data positive
2	TRX-	Transmit/Receive differential data negative

2.4.4.4. Debug Port

You can check debug message or status information with debug port.

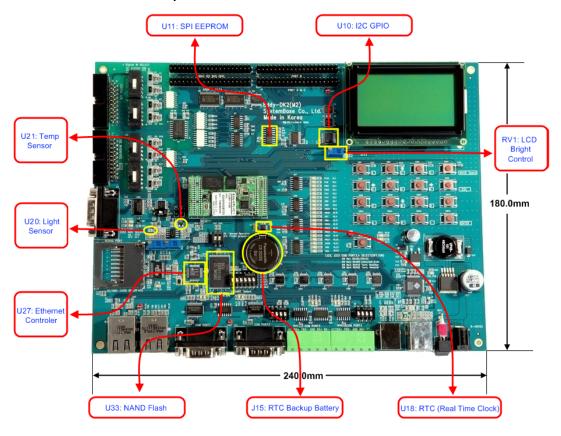
Environment Setting


Debug port is configured as follows so user has to set his or her PC serial port connected to debug port as follows.

Speed: 115200 bps Data bit: 8 bit Parity bit: Non Parity

Stop bit: 1 bit

2.4.4.5. Power Jack


Contact	Polarity
Center (D: 2mm)	9-48VDC
Outer (D: 6,5mm)	Ground

2.4.5 Internal Device Description

2.4.5.1. EEPROM

Eddy-DK v2.1 has the AT25160, 2Kx8bit SPI EEPROM.

2.4.5.2. LCD Module

Graphic LCD Module (PowerTIP PG12864LRU-JCNH11Q and I2C-Bus I/O Expander IC PCA9539)

1			/
Signal Name	Function	Description	I/O
P[00:07]	Data bits	Used for data transfer between the CPU and the LCD module.	I/O
P10	/CS1	Chip enable for D2 (Segment 1 to 64)	IN
P11	/CS2	Chip enable for D3 (Segment 65 to 128)	IN
P12	R/W	R/W signal input is used to select the read /write mode High = Read mode, Low = Write mode	IN
P13	D/ I	Register selection input High = Data register Low = Instruction register (for write) Busy flag address counter (for read)	IN
P14	Е	Start enable signal to read or write the data.	IN

2,4,5,3, 16bit I2C Bus GPIO

This 16-bit I2C Bus GPIO (PCA9539) provides general-purpose remote I/O expansion.

Slave address of this chip is set to 0x74 in DK board, and Address can be changed with A1,A0 address input from 0x74 to 0x77.

16-bit I/O is used to Digital Input/Output as below, and this is connected with the Expansion Header also. If you use for GPIO, it is possible to configure individually.

Function	Description	I/O
P00-P07	DIO Output, Connected with DO[0:7]	OUT
P00	DIO output, DO0	
P01	DIO output, DO1	
P02	DIO output, DO2	
P03	DIO output, DO3	
P04	DIO output, DO4	
P05	DIO output, DO5	
P06	DIO output, DO6	
P07	DIO output, DO7	
P10-P17	DIO Intput, Connected with DI[0:7]	IN
P10	DIO Input, DI0	
P11	DIO Input, DI1	
P12	DIO Input, DI2	
P13	DIO Input, DI3	
P14	DIO Input, DI4	
P15	DIO Input, DI5	
P16	DIO Input, DI6	
P17	DIO Input, DI7	
/INT	Connected with PB16 of Eddy-CPU	OUT

2.4.5.4. RTC

- DS1340 (Dallas, I2C interface)
- 12.5pF load capacitance crystal must be used. (Refer to Crystal Spec below)
- Do not use another RTC Chip.
- Backup Battery: CR2032 (235mAh) Lithium Battery.

DS1340 Crystal Specifications

Parameter	Symbol	MIN	TYP	MAX	Units
Normal Frequency	fo		32,768		KHz
Series Resistance	ESR			45,60	KΩ
Load Capacitance	CL		12.5		pF

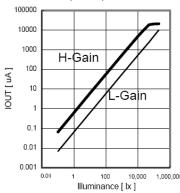
2.4.5.5. Temp Sensor

+Vs (4.5V to 10V)

LM50

Output

Vout = (10mV/°C Temp x °C) + 500mV


Vout = +1.750V at +125 °C

Vout = +750mV at +25 °C

Vout = +100mV at -40 °C

2.4.5.6. Light Sensor

BH1600FVC (Rohm)

The Output voltage is caculated as below

Viout = $0.6 \times 10-6 \times Ev \times R1$

Where, Viout = IOUT output voltage [V]

Ev = lilluminance of the ALS(Ambient Light Sensor) surface [Ix]

R1 = IOUT output resistor [Ω]

2.4.5.7. NAND Flash

- 256MB, 8bit Flash (Samsung K9F2G08U0A-PCB0)
- Chip Select #3 used, Address range: 0x4000_0000~0x4FFF_FFFF.

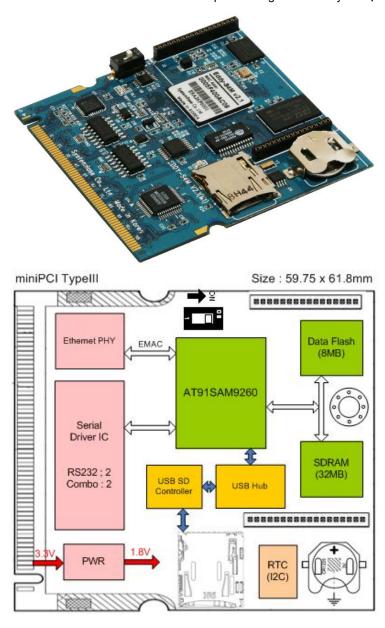
Eddy-CPU v2.1 /v2.5 Signal Name	Function	Discription	I/O
A22	CLE	COMMAND LATCH ENABLE The CLE input controls the activating path for commands sent to the command register.	OUT
A21	ALE	ADDRESS LATCH ENABLE The ALE input controls the activating path for	OUT

		address to the internal address registers.	
NANDOE	NANDOE	data-out control	OUT
NANDWE	NANDWE	controls writes to the I/O port	OUT
PC14(NCS3)	NANDCS	device selection control	OUT
PC17	RDYBSY (R/B)	READY/BUSY OUTPUT The R/B output indicates the status of the device operation. When low, it indicates that a program, erase or random read operation is in process and returns to high state upon completion. It is an open drain output and does not float to high-z condition when the chip is deselected or when outputs are disabled.	IN
D[0:7]	DATA bits	DATA INPUTS/OUTPUTS The I/O pins are used to input command, address and data, and to output data during read operations. The I/O pins float to high-z when the chip is deselected or when the outputs are disabled.	I/O

2.4.5.8. Ethernet Controller (WAN Port)

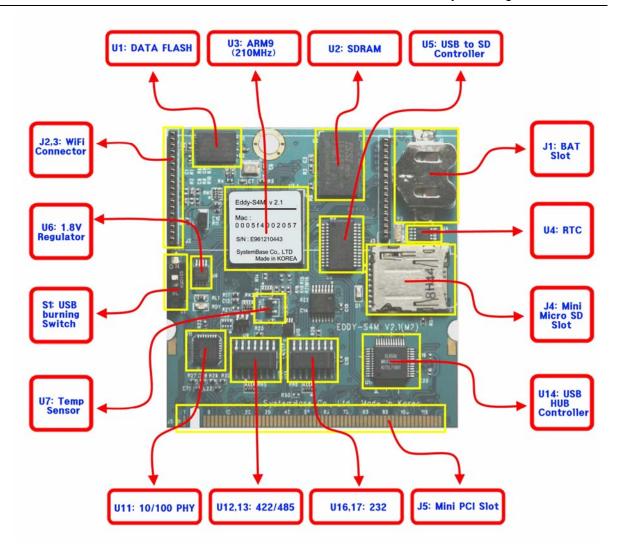
- Davicom DM9000B Ethernet Controller
- 16 bit mode set
- EECS pin should be connected with pull-up resistor to use link/speed LED.
- RJ45 Transformer Center Tap is powered by DM9000B AVDD18.

Eddy-CPU v2.1 /v2.5 Signal Name	DM9000B Signal Name	Description	I/O
PC12/NCS7	CSN	Chip Select #7 Address: 0x8000 0000-0x8FFF FFFF	OUT
PC15/IRQ1	INTRN	Interrupt depend on EECK(pin20) setting. 1: INT pin low active 0: INT pin high active EECK is not connected in DK board, so Interrupt is acted with active high.	IN
A2	CMD	Command Type When high, Data port When low, INDEX port	OUT
D[0:15]	Data Bus	16-bit mode	I/O



2.5 Eddy-S4M v2.1

Eddy-S4M is a high-performance mini PCI type embedded module which include ATMEL AT91SAM9260-CJ porcessor 32MB SDRAM, 8MB DataFlash, 10/100Base-T Ethernet port, Serial 4 Channel, RTC with Battery, minroSD, 4ch ADC, temperature sensor, max 34 programmable GPIO pins. Eddy-S4M is 59.75 x 61.8mm size. If using Eddy-S4M-JIG board, user could develop their customized device without other H/W development, which minimizing time and cost to develop.


Referring Example code and Evaluation Kit circuit allow developer to design device they want.

[Eddy-S4M v2.1 Block Diagram]

2.5.1 5.1 miniPCl Card Type III Connector Pinout (J5)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	JTAG_TDI	2	JTAG_TDO	63	3,3V	64	PB13
	Key		Key	65	PB16	66	PB17
2	JTAG_TMS	4	JTAG_RTCK	67	PB18	68	PB19
3	JTAG_TCK	6	ICE_NTRST	69	GND	70	3.3V
7	LAN_RX+	8	LAN_TX+	71	PB20	72	PB21
9	LAN_RX-	10	LAN_TX-	73	PB30	74	GND
11	LAN_Speed	12	LAN_LINK	75	PC0	76	PB31
13	P3_RX-	14	RDY#	77	GND	78	PC1
15	GND	16	NC	79	PC2	80	PC3
17	P3_RX+	18	NC	81	PC5	82	GND
19	3.3V	20	DCD0	83	GND	84	PC9
21	P3_TX+	22	DTR0	85	PC10	86	PC12
23	GND	24	3.3V	87	PC13	88	3,3V

25	P3_TX-	26	nRESET	89	3.3V	90	PC14
27	GND	28	3.3V	91	PC15	92	PC17
29	P4_RX+	30	RxD0#	93	PC18	94	PC19
31	3.3V	32	GND	95	PC24	96	PC20
33	P4_RX-	34	RTS0	97	NC	98	PC25
35	P4_TX+	36	TxD0#	99	I2C_TWCK	100	I2C_TWD
37	GND	38	CTS0	101	GND	102	GND
39	P4_TX-	40	3.3V	103	DDM	104	DDP
41	DEBUG_TxD	42	DSR0	105	DM2	106	DP2
43	DEBUG_RxD	44	RI0	107	DM3	108	DP3
45	PA5	46	RxD1#	109	DM4	110	DP4
47	PA22	48	RTS1	111	SDDATA0	112	SDDATA1
49	GND	50	GND	113	SDDATA2	114	GND
51	PA30	52	TxD1#	115	SDCMD	116	SDDATA3
53	NC	54	CTS1	117	SDCDN	118	SDCLK
55	GND	56	NRST	119	JTAG_SEL	120	SDWP
57	PB0	58	PB1	121	NC	122	BMS
59	PB2	60	PB3	123	NC	124	3.3V
61	PB12	62	GND				

2.5.2 Connector Pinout of Boards

2.5.2.1. ICE and JTAG

S4M Pin No (124)	Name	S4M-JIG Pin HDR (46*2)	S4M-DK Pin HDR (46*2)	Description
1	TDI	-	-	Test Data IN
2	TDO	-	-	Test Data Out
3	TMS	-	-	Test Mode Select
4	RTCK	-	-	Return Test Clock
5	TCK	-	-	Test Clock
6	NTRST	-	-	Test Reset
				JTAG boundary scan can be used by connecting J3.
119	JTAGSEL	-	-	This pin should not be connected when using ICE (In-Circuit Emulator) or in normal operation status.

2.5.2.2. Ethernet signal from or to PHYceiver

S4M Pin No (124)	Name	S4M-JIG Pin HDR (46*2)	S4M- DK Pin HDR (46*2)	Description
7	LAN_RX+	J5 pin2	J7 Pn2	Ethernet PHY Physical receive or transmit signal (+ differential) in CPU
8	LAN_TX+	J5 pin1	J7 Pin1	Ethernet PHY Physical receive or transmit signal (- differential) in CPU
9	LAN_RX-	J5 pin3	J7 pin3	Ethernet PHY Physical receive or transmit signal (+ differential) in CPU
10	LAN_TX-	J5 pin4	J7 pin4	Ethernet PHY Physical receive or transmit signal (- differential) in CPU

					LAN connect	ion status LED				
				Link/Activity	Pin State	LED Definition				
11	LAN_Speed	J5 pin6	J7 pin6	No Link	Н	OFF				
11	LAN_Speed	JS PINO	or pino	Link	L	ON				
							Activity	Toggle	Blinking	
				Link/Activity	Pin State	LED Definition				
12	12 LAN_Link	J5 pin5	J7 pin5	No Link	Н	OFF				
			Link	L	ON					
				Activity	Toggle	Blinking				

2.5.2.3. Serial (RS232 & COMBO) and PIOA (Peripheral I/O Controller A)

S4M Pin No (124)	Name	S4M-JIG Pin HDR (46*2)	S4M-DK Pin HDR (46*2)	Description
13	P2_RX-	J4 pin20	J6 pin20	COM port #3 Receive differential data negative (Input) RS422/485 inverting receiver input of Eddy-S4M module
14	RDY#	J4 pin45	J6 pin45	Indicate state of CPU (normal : blinking)
17	P2_RX+	J4 pin19	J6 pin19	COM port #3 Receive differential data positive (Input) RS422/485 Noninverting receiver input of Eddy-S4M module
20	DCD0	J4 pin9	J6 pin9	COM port #1 Data Carrier Detection signal RS232 receiver input of Eddy-S4M module
21	P2_TX+	J4 pin17	J6 pin17	COM port #3 Transmit differential data positive (Output) RS422/485 Noninverting driver ouput of Eddy-S4M module
22	DTR0	J4 pin7	J6 pin7	COM port #1 Data Terminal Ready signal RS232 driver output of Eddy-S4M module
25	P2_TX-	J4 pin18	J6 pin18	COM port #3 Transmit differential data negative (Output) RS422/485 inverting driver ouput of Eddy-S4M module
26	nRESET	J4 pin46	J6 pin46	Reset Input. In S/W, continuously check the interval of "LOW" when polling input signal from external Reset Key. Under 5sec: Normal reset function Over 5sec: Factory Default function
29	P3_RX+	J4 pin23	J6 pin23	COM port #4 Receive differential data negative (Input) RS422/485 Noninverting receiver input in Eddy-S4M module
30	RxD0#	J4 pin4	J6 pin4	COM port #1 Receive Data signal RS232 receiver input in Eddy-S4M module
33	P3_RX-	J4 pin24	J6 pin24	COM port #4 Receive differential data negative (Input) RS422/485 inverting receiver input in Eddy-S4M module
34	RTS0	J4 pin5	J6 pin5	COM port #1 Request To Send signal

				RS232 driver output in Eddy-S4M module
35	Do TV.	14 nin01	I6 nin01	COM port #4 Transmit differential data positive (Output)
33	P3_TX+	J4 pin21	J6 pin21	RS422/485 Noninverting driver ouput in Eddy-S4M module
26	TxD0#	14 nin2	J6 pin3	COM port #1 Transmit Data signal
36	TXDU#	J4 pin3	Jo pins	RS232 driver output in Eddy-S4M module
38	CTS0	J4 pin6	J6 pin6	COM port #1 Request to Send signal
36	0130	04 ріпо	Jo pillo	RS232 receiver input in Eddy-S4M module
39	P3_TX-	J4 pin22	J6 pin22	COM port #4 Transmit differential data negative(Output)
39	P3_1A-	J4 pinzz	Jo pinzz	RS422/485 inverting driver ouput in Eddy-S4M module
41	DTxD#	J4 pin1	J6 pin1	Transmit Data signal of Debug Port
41	DIXD#	Ј4 РІПТ	Jo pini	RS232 driver output in Eddy-S4M module
42	DSR0	J4 pin8	I6 pin9	COM port #1 Data Set Ready signal
42	DONU	Ј4 РШО	J6 pin8	RS232 receiver input in Eddy-S4M module
43	DRxD	J4 pin2	J6 pin2	Receive Data signal of Debug Port
43	DHXD	04 pinz		RS232 receiver input in Eddy-S4M module
44	RI0	14 nin0	I6 nin0	COM port #1 Ring Indicator signal
44	NIU	J4 pin8	J6 pin8	RS232 receiver input in Eddy-S4M module
45	PA5	J5 pin7	J7 pin7	Only used for GPIO
40	D D4"	14 : 40	10 1 10	COM port #1 Receive Data signal
46	RxD1#	J4 pin12	J6 pin12	RS232 receiver input in Eddy-S4M module
47	PA22	J5 pin8	J7 pin8	Only used for GPIO
				COM port #1 Request to Send signal
48	RTS1	J4 pin13	J6 pin13	RS232 driver output in Eddy-S4M module
51	PA30	J5 pin9	J7 pin9	Only used for GPIO
			10 /	COM port #1 Request to Send signal
52	TxD1#	J4 pin11	J6 pin11	RS232 driver output in Eddy-S4M module
5.4	0.704	14 1 44	10 1 11	COM port #1 Request to Send signal
54	CTS1	J4 pin14	J6 pin14	RS232 receiver input in Eddy-S4M module
56	NRST	J5 pin46	J7 pin46	External device Reset output signal (active low)
				1

2.5.2.4. PIOB and PIOC (Peripheral I/O Controller B/C)

S4M Pin No (124)	Name	S4M-JIG Pin HDR (46*2)	S4M-DK Pin HDR (46*2)	Description	
57	PB0	J5 pin11	J7 pin11 .	Peripheral A : SPI1_MISO	SPI1(Serial Peripheral Interface) Master In Slave Out
	. 20		. P	Peripheral B : TIOA3	Timer Counter ch3 I/O Line A

	1	I	I	1	I
58	PB1	J5 pin12	J7 pin12	Peripheral A : SPI1_MOSI	SPI1(Serial Peripheral Interface) Master Out Slave In
		00 pii112	στ μπτΣ	Peripheral B : TIOB3	Timer Counter ch3 I/O Line B
59	PB2	J5 pin13	J7 pin13	Peripheral A : SPI1_SPCK	SPI1(Serial Peripheral Interface) Serial
					Clock
				Peripheral A : SPI1_NPCS0	SPI1(Serial Peripheral Interface)
60	PB3	J5 pin14	J7 pin14		Peripheral Chip Select 0
				Peripheral B : TIOA5	Timer Counter ch5 I/O Line A
61	PB12	J5 pin17	J7 pin17	Peripheral A : TXD5	USART5 Transmit Data
64	PB13	J5 pin18	J7 pin18	Peripheral A : RXD5	USART5 Receive Data
65	PB16	J5 pin119	J7 pin119	Peripheral A : TK0	SSC Transmit Clock
05	ГБІО	33 pii1119	or pilitio	Peripheral B : TCLK3	Timer Counter ch3 External CLK IN
00	DD47	15 : 00	17 : 00	Peripheral A : TF0	SSC Transmit Frame Sync
66	PB17	J5 pin20	J7 pin20	Peripheral B : TCLK4	Timer Counter ch4 External CLK IN
67	DD10	IE mim01	17 min 01	Peripheral A : TD0	SSC Transmit Data
67	PB18	J5 pin21	J7 pin21	Peripheral B : TIOB4	Timer Counter ch4 I/O Line B
20	DD40	15 : 00	17 : 00	Peripheral A : RD0	SSC Receive Data
68	PB19	J5 pin22	J7 pin22	Peripheral B : TIOB5	Timer Counter ch5 I/O Line B
71	PB20	J5 pin23	J7 pin23	Peripheral A : RK0	SSC Receive Clock
72	PB21	J5 pin24	J7 pin24	Peripheral A : RF0	SSC Receive Frame Sync
73	PB30	J5 pin25	J7 pin25	Peripheral A : PCK0	Programmable Clock Output 0
75	PC0	J5 pin27	J7 pin27	Peripheral A : AD0	Analog to Digital Converter Input Ch0
76	PB31	J5 pin26	J7 pin26	Peripheral A : PCK1	Programmable Clock Output 1
70	DO1	IF:00	17 :- 00	Peripheral A : AD1	Analog to Digital Converter Input Ch1
78	PC1	J5 pin28	J7 pin28	Peripheral B : PCK0	Programmable Clock Output 0
70	DC2	15 pi=00	17 pin00	Peripheral A : AD2	Analog to Digital Converter Input Ch2
79	PC2	J5 pin29	J7 pin29	Peripheral B : PCK1	Programmable Clock Output 1
				Peripheral A : AD3	Analog to Digital Converter Input Ch3
80	PC3	J5 pin30	J7 pin30	Paripharal P - CDI4 NDCC0	SPI1(Serial Peripheral Interface)
				Peripheral B : SPI1_NPCS3	Peripheral Chip Select 3
81	PC5	J5 pin33	J7 pin33	Peripheral B : SPI1_NPCS1	SPI1(Serial Peripheral Interface)
01		30 Pillo0	or pilloo	Peripheral B : SPI1_NPCS1	Peripheral Chip Select 1

84	PC9	J5 pin34	J7 pin34	Only GPIO			
85	PC10	J5 pin35	J7 pin35	Only GPIO			
86	PC12	J5 pin36	J7 pin36	Only GPIO			
87	PC13	J5 pin37	J7 pin37	Only GPIO			
90	PC14	J5 pin38	J7 pin38	Only GPIO			
91	PC15	J5 pin39	J7 pin39	Only GPIO			
92	PC17	J5 pin40	J7 pin40	Only GPIO			
93	PC18	J5 pin41	J7 pin41	Peripheral B : SPI1_NPCS1 SPI1(Serial Peripheral Interface) Peripheral Chip Select 1			
94	PC19	J5 pin42	J7 pin42	Peripheral B : SPI1_NPCS2 SPI1(Serial Peripheral Interface) Peripheral Chip Select 2			
95	PC24	J5 pin44	J7 pin44	Only GPIO			
96	PC20	J5 pin43	J7 pin43	Peripheral B : SPI1_NPCS3 SPI1(Serial Peripheral Interface) Peripheral Chip Select 3			
98	PC25	J5 pin45	J7 pin45	Only GPIO			

2.5.2.5. Two Wire Interface

S4M Pin No (124)	Name	S4M-JIG Pin HDR (46*2)	S4M-DK Pin HDR (46*2)	Description
99	I2C_TWCK	J4 pin43	J6 pin43	Two-wire Serial Clock. This can be used GPIO pin unless RTC function is used.
100	I2C_TWD	J4 pin44	J6 pin44	Two-wire Serial Data. This can be used GPIO pin unless RTC function is used.

2.5.2.6. Universal Serial Bus

S4M		S4M-JIG	S4M-DK	
Pin No	Name	Pin HDR	Pin HDR	Description
(124)		(46*2)	(46*2)	
103	DDM	J4 pin25	J6 pin25	USB Device Port Data -
104	DDP	J4 pin26	J6 pin26	USB Device Port Data +
105	DM2	J4 pin27	J6 pin27	USB Port2 Data Connected to DSPORT2 of GL850A
105	DIVIZ	J4 μπ2 <i>τ</i>	Jo pilizi	USB 2.0 Hub Controller.
100	DDO	14 :- 07	10 -:-07	USB Port2 Data +. Connected to DSPORT2 of GL850A
106	DP2	J4 pin27	J6 pin27	USB 2 _. 0 Hub Controller

107	107 DM3 J4 pin29		10 1 00	USB Port3 Data - Connected to DSPORT2 of GL850A
107	DIVI3	J4 pin29 J6 pin29		USB 2.0 Hub Controller.
100	DDO	14 1 00	10 1 00	USB Port3 Data +. Connected to DSPORT2 of GL850A
108	DP3	J4 pin30	J6 pin30	USB 2.0 Hub Controller.
100	5144		10 : 00	USB Port4 Data Connected to DSPORT2 of GL850A
109	DM4	J4 pin33	J6 pin33	USB 2.0 Hub Controller.
440	110 DD4 14.5		10 1 04	USB Port4 Data +. Connected to DSPORT2 of GL850A
110	DP4	J4 pin34	J6 pin34	USB 2.0 Hub Controller.

2.5.2.7. Multimedia Card Interface

S4M Pin No (124)	Name	S4M-JIG Pin HDR (46*2)	S4M-DK Pin HDR (46*2)	Description
111	SDDATA0	J4 pin35	J6 pin35	SD Data0
112	SDDATA1	J4 pin36	J6 pin36	SD Data1
113	SDDATA2	J4 pin37	J6 pin37	SD Data2
115	SDCMD	J4 pin38	J6 pin38	SD command
116	SDDATA3	J4 pin39	J6 pin39	SD Data3
117	SDCDN	J4 pin40	J6 pin40	SD card detect
118	SDCLK	J4 pin41	J6 pin41	SD Clock
120	SDWP	J4 pin42	J6 pin42	SD Write Protect
122	BMS	-	-	Boot Mode Select signal BMS = 1, Boot on Embedded ROM BMS = 0, Boot on External Memory

2.5.2.8. etc

S4M Pin No (124)	Name	S4M-JIG Pin HDR (46*2)	S4M-DK Pin HDR (46*2)	Description	
16, 18, 53, 97, 121, 123	NC	J5 pin10	J5 pin10	No Connection	
15, 23, 27, 32, 37, 49, 50, 55, 62,	GND	J4: 31,32 J5: 31,32	J6: 31,32 J7: 31,32	Ground	

69, 74, 77,				
82, 83, 101,				
102, 114				
19, 24, 28,				
31, 40, 63,	0.01/	14, 15, 16	10: 15:16	2.0 to 2.6 1/ pourse input
70, 88, 89,	3.3V	J4: 15,16	J6: 15,16	3.0 to 3.6V power input
124				

2.5.3 Switch Operation

Switch No 1	Operation description
OFF	For Flash Programming Store firmware image to Flash memory through USB Device. (Only via Window Host). For more information, please refer to chapter 9, system recovery.
ON	Normal booting via Eddy-S4M v2.1 Data Flash

2.5.4 LED Operation

System Ready (RDY): Indicate normal state of system (Normal: blinking)

2.5.5 Ethernet

Since there is KSZ8041NL PHY in Eddy-S4M module, when integrating Ethernet, just connect RJ45 in which transformer located

WARNING: When you use RJ45 which has transformer in its internal circuit, it is possible to each product doesn't have equal PIN spec. Therefore, you must confirm PIN number

Bellow is KSZ8041NL functions

- Fully compliant to IEEE 802.3u Standard
- Supports MDI/MDI-X auto crossover (Auto-MDI)
- · MII interface support
- RMII interface support with external 50MHz system clock
- · ESD rating (6kV)
- Built-in 1.8V regulator for core
- Available in 32-pin (5mm x 5mm) MLF® package

2,5,6 RTC

- We used D1340 which is connected I2C interface.
- In DS1340, you must use crystal of load capacitance = 12.5pF (Refer to bellow Crystal spec)

- You have to confirm Crystal spec because some RTC Chips have different spec
- We used CR2032 (235mAh) Lithium with Backup Battery

DS1340 Crystal Specifications

Parameter	Symbol	MIN	TYP	MAX	Units
Normal Frequency	fo		32,768		KHz
Series Resistance	ESR			45,60	KΩ
Load Capacitance	CL		12.5		pF

2.5.7 Temp Sensor

we used LM50(National) to AD0(PC0)

+Vs (4.5V to 10V)

LM50

Output

Vout = (10mV/℃ Temp x ℃) + 500mV

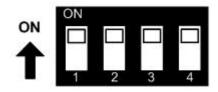
Vout = +1.750V at +125 ℃

Vout = +750mV at +25 ℃

Vout = +100mV at -40 ℃



2.6 Eddy-S4M-DK v2.1


Eddy-S4M DK is Development Kit supporting programmer can easily materialize and test their application.

2.6.1 Switch and Connector explanation

2.6.1.1. S2: GPIO Input Configuration

After configure PB0-PB4 to input, you can confirm whether the input value is changing with dip switch control.

Switch No		Down Position(OFF)	UP Position(ON)
1	PB0 Value	Low	High
2	PB0 input value	Low	High
3	PB0 input value	Low	High
4	PB0 input value	Low	High

2.6.1.2. S3,4: Terminal Resistor selection

COM Port #3 and COM Port #4 is Combo port which support RS422/RS485 interface. Terminal resistors in each port are configured by switch upon each Terminal Block.

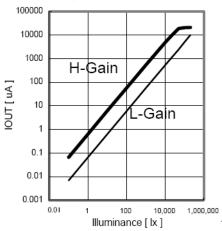
Switch No	Down Position(OFF)	UP Position(ON)
1	RS422 Termination Resistor not connected	RS422 Termination Resistor Connected
2	RS485 Termination Resistor not connected	RS422 Termination Resistor Connected
1	RS422 Termination Resistor not connected	RS422 Termination Resistor Connected
2	RS485 Termination Resistor not connected	RS422 Termination Resistor Connected

2.6.1.3. J6,J7: JIG Board connector(Socket)

J6 J7

Pin	Signal	Pin	Signal
1	DTxD	2	DRxD
3	TxD0#	4	RxD0#
5	RTS0	6	CTS0
7	DTR0	8	DSR0
9	DCD0	10	RI0
11	TxD1#	12	RxD1#
13	RTS1	14	CTS1
15	3.3V	16	3.3V
17	P3_TX+	18	P3_TX-
19	P3_RX+	20	P3_RX-
21	P4_TX+	22	P4_TX-
23	P4_RX+	24	P4_RX-
25	DDM	26	DDP
27	DM2	28	DP2
29	DM3	30	DP3

Pin	Signal	Pin	Signal
1	LAN_RX+	2	LAN_TX+
3	LAN_RX-	4	LAN_TX-
5	LAN_Speed	6	LAN_LINK
7	PA5	8	PA22
9	PA30	10	NC
11	PB0	12	PB1
13	PB2	14	PB3
15	5V	16	5V
17	PB12	18	PB13
19	PB16	20	PB17
21	PB18	22	PB19
23	PB20	24	PB21
25	PB30	26	PB31
27	PC0	28	PC1
29	PC2	30	PC3



31	GND	32	GND
33	DM4	34	DP4
35	SDDATA0	36	SDDATA1
37	SDDATA2	38	SDDATA3
39	SDCMD	40	SDCLK
41	SDCDN	42	SDWP
43	TWCK	44	TWD
45	RDY#	46	nRESET(IN)

31	GND	32	GND
33	PC5	34	PC9
35	PC10	36	PC12
37	PC13	38	PC14
39	PC15	40	PC17
41	PC18	42	PC19
43	PC20	44	PC24
45	PC25	46	NRST(OUT)

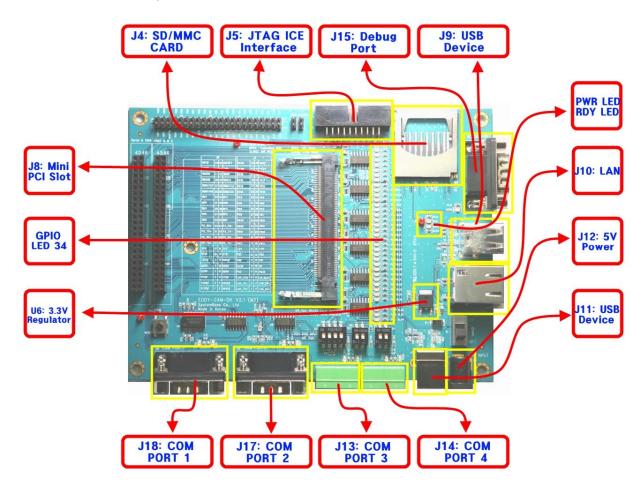
2.6.1.4. U7: Light Sensor

Bellow is comparison between luminance and out current. We used BH1600FVC (Rohm)

The Output voltage is caculated as below

Viout = $0.6 \times 10-6 \times Ev \times R1$

Where, Viout = IOUT output voltage [V]


Ev = lilluminance of the ALS(Ambient Light Sensor) surface [Ix]

R1 = IOUT output resistor [Ω]

2.6.2 Interface Explanation

2.6.2.1. Power, Ready LED

System Ready (RDY): Indicate normal state of system (Normal: blinking) Power (PWR): indicate Power is inserted (RED LED ON state)

2.6.2.2. Serial Port LED

Operation description

Pin Name	Signal Name	Descriotion
Debug Port	TxD	Debug Port Tx LED
Debug i oit	RxD	Debug Port Rx LED
COM Port 1	TxD	COM Port1 Tx LED
(RS232)	RxD	COM Port1 Rx LED
COM Port 2	TxD	COM Port2 Tx LED
(RS232)	RxD	COM Port2 Rx LED
	TxD	If RS422 is COM Port3 Tx LED
COM Port 3 (RS422/RS485)	TXD	If RS485 is Tx/Rx Common LED
	RxD	If RS422 is COM Port3 Rx LED

		If RS485 is LED Off (Not Used)
	TxD	If RS422 is COM Port4 Tx LED
COM Port 4 (RS422/RS485)		If RS485 is Tx/Rx Common LED
	RxD	If RS422 is COM Port4 Rx LED
	חאט	If RS485 is LED Off (Not Used)

2.6.2.3. GPIO LED

Eddy-S4M Provide max 34ea GPIO port.

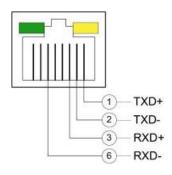
No	Pin Name	Descriotion	I/O
1	PC25	GPIO Only	I/O
2	PC24	GPIO Only	I/O
3	PC20	GPIO or SPI1_NPCS3	I/O
4	PC19	GPIO or SPI1_NPCS2	I/O
5	PC18	GPIO or SPI1_NPCS1	I/O
6	PC17	GPIO Only	I/O
7	PC15	GPIO Only	I/O
8	PC14	GPIO Only	I/O
9	PC13	GPIO Only	I/O
10	PC12	GPIO Only	I/O
11	PC10	GPIO Only	I/O
12	PC9	GPIO Only	I/O
13	PC5	GPIO or SPI1_NPCS1	I/O
14	PC3	GPIO or AD3 or SPI1_NPCS3	I/O
15	PC2	GPIO or AD2 or PCK0	I/O
16	PC1	GPIO or AD1 or PCK0	I/O
17	PC0	GPIO or AD0	I/O
18	PB31	GPIO or PCK1	I/O
19	PB30	GPIO or PCK0	I/O
20	PB21	GPIO or RF0	I/O
21	PB20	GPIO or RK0	I/O
22	PB19	GPIO or RTD0 or TIOB5	I/O
23	PB18	GPIO or TD0 or TIOB4	I/O
24	PB17	GPIO or TF0 or TCLK4	I/O
25	PB16	GPIO or RxD5 or TCLK3	I/O
26	PB13	GPIO or RxD5	I/O
27	PB12	GPIO or TxD5	I/O
28	PB3	GPIO or SPI1_NPCS0 or TIOA5	I/O
29	PB2	GPIO or SPI1_SPCK	I/O
30	PB1	GPIO or SPI1_MOSI or TIOB3	I/O
31	PB0	GPIO or SPI1_MISO or TIOA3	I/O
32	PA30	GPIO Only	I/O
33	PA22	GPIO Only	I/O
34	PA5	GPIO Only	I/O

PIO line has high-drive current capable so that can drive about 16mA except PC4-PC31(2mA). (41.2 DC characteristics of CPU Datasheet, Refer to bellow)

AT91SAM9260 DC Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	I _o Output Current	PA0-PA31 PB0-PB31 PC0-			16	
		PC3				
10		PC4 - PC31 in 3.3V range			2*	mA
		PC4 - PC31 in 1.8V range			4	

^{*} Since Eddy-S4M v2.1 is 3.3V range, PC4-PC31 PIO can drive 2mA.

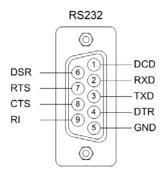

2.6.2.4. J10: Ethernet

Since there is KSZ8041NL PHY in Eddy-S4M module, when integrating Ethernet, just connect RJ45 in which transformer located

WARNING: When you use RJ45 which has transformer in its internal circuit, it is possible to each product doesn't have equal PIN spec. Therefore, you must confirm PIN number

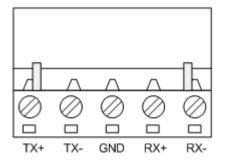
Bellow is KSZ8041NL functions

- Fully compliant to IEEE 802.3u Standard
- Supports MDI/MDI-X auto crossover (Auto-MDI)
- · MII interface support
- RMII interface support with external 50MHz system clock
- ESD rating (6kV)
- Built-in 1.8V regulator for core
- Available in 32-pin (5mm x 5mm) MLF® package


Pin	Signal	Description				
1	TXD+	Physical transmit or receive signal (+ differential)				
2	TXD-	Physical transmit or receive signal (- differential)				
3	RXD+	Physical transmit or receive signal (+ differential)				
6	RXD-	Physical transmit or receive signal (- differential)				
LED		Description				
		LAN Connection Speed				
Left Green		Speed	Pin State	LED Definition		
		10Base-T	Н	OFF		
		100Base-TX	L	ON		

	LAN Connection Status			
	Speed	Pin State	LED Definition	
Right Yellow	No Link	Н	OFF	
	Link	L	ON	
	Activity	Toggle	Blinking	

2.6.2.5. J17, 18: COM Port 1 & Port 2


DB9 Male (COM Port 1, 2 공통)

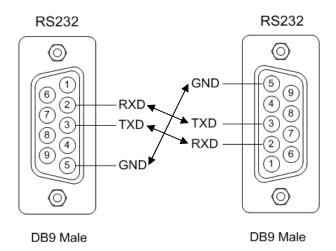
RS232

Pin	Signal	Description
1	DCD	Data Carrier Detection (Input) (COM Port 1 only)
2	RXD	Receive Data (Input)
3	TXD	Transmit Data (Output)
4	DTR	Data Terminal Ready (Output) (COM Port 1 only)
5	GND	Ground
6	DSR	Data Set Ready (input) (COM Port 1 only)
7	RTS	Request to Send (Output)
8	CTS	Clear to Send (Input)
9	RI	Ring Indicator (Input)

^{*} COM Port 2 provide only TxD, RxD, RTS, CTS signal.

2.6.2.6. J13, 14: COM Port 3 & Port 4

RS422 Full Duplex


Pin	Signal	Description
1	TXD+	Transmit differential data positive (Output)
2	TXD-	Transmit differential data negative (Output)
3	GND	Ground
4	RXD+	Receive differential data positive (Input)
5	RXD-	Receive differential data negative (input)

RS485 Half Duplex

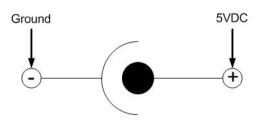
Pin	Signal	Description
1	TRX+	Transmit/Receive differential data positive
2	TRX-	Transmit/Receive differential data negative

J15: Debug Port

You can confirm debug massage and information of state through debug port.

Environment Configuration

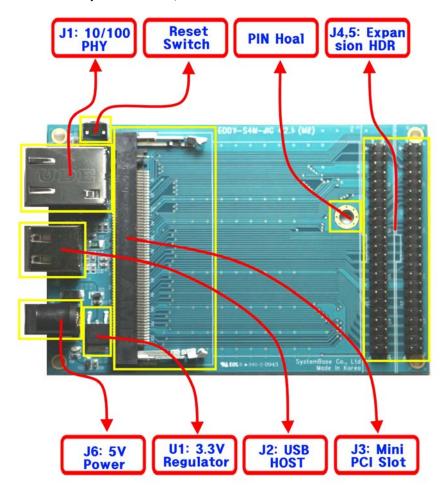
Debug port is configured like below so that you must change serial port (connected with debug port) configuration like bellow.

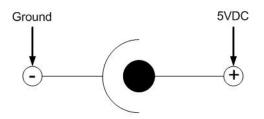

Speed: 115200 bpsData bit: 8 bitParity bit: Non ParityStop bit: 1 bitFlow control: none

2.6.2.7. S1 : Power Jack

Contact	Polarity
Center (D: 2mm)	5VDC
Outer (D: 6,5mm)	Ground

GPIO Connector pinout

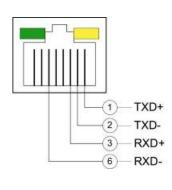

Pin	Signal	Pin	Signal
1	PA5	2	PA22
3	PA30	4	NC
5	PB0	6	PB1
7	PB2	8	PB3
9	PB12	10	PB13
11	PB16	12	PB17
13	PB18	14	PB19
15	3.3V	16	3.3V
17	PB20	18	PB21
19	PB30	20	PB31
21	PC0	22	PC1
23	PC2	24	PC3
25	PC5	26	PC9
27	PC10	28	PC12
29	PC13	30	PC14
31	GND	32	GND
33	PC15	34	PC17
35	PC18	36	PC19
37	PC20	38	PC24
39	PC25	40	nRESET(IN)
41	RDY#	42	NRST(OUT)
43	TWCK	44	TWD


2.7 Eddy-S4M-JiG v2.1

Eddy-S4M JIG board is test board which enable of user to integrate and test their application with Eddy-S4M_ JIG board include mini connector for joining Eddy-S4M, Ethernet RJ45, USB Host, Power, Reset Switch, and providing connectors to all Eddy-S4M functions.

2.7.1 J6 : Power Jack

Contact	Polarity
Center (D : 2mm)	5VDC
Outer (D: 6,5mm)	Ground

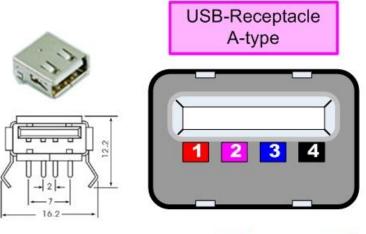

2.7.2 J1 : Ethernet

Since there is KSZ8041NL PHY in Eddy-S4M module, when integrating Ethernet, just connect RJ45 in which transformer located

WARNING: When you use RJ45 which has transformer in its internal circuit, it is possible to each product doesn't have equal PIN spec. Therefore, you must confirm PIN number

Bellow is KSZ8041NL functions

- Fully compliant to IEEE 802,3u Standard
- Supports MDI/MDI-X auto crossover (Auto-MDI)
- · MII interface support
- RMII interface support with external 50MHz system clock
- ESD rating (6kV)
- Built-in 1.8V regulator for core
- Available in 32-pin (5mm x 5mm) MLF® package


Pin	Signal	Description			
1	TXD+	Physical transmit or receive signal (+ differential)			
2	TXD-	Physical transn	nit or receiv	e signal (- differen	itial)
3	RXD+	Physical transn	nit or receiv	e signal (+ differer	ntial)
6	RXD-	Physical transn	nit or receiv	e signal (- differen	ntial)
LED		Description			
		LAN Connectio	n Speed		
Left Green		Speed	Pin State	LED Definition	
		10Base-T	Н	OFF	
		100Base-TX	L	ON	
		LAN Connectio	n Status		
Right Yellow		Speed	Pin State	LED Definition	
		No Link	Н	OFF	
		Link	L	ON	
		Activity	Toggle	Blinking	

2,7,3 J2: USB Host

J2 is connected to USB HUB ControllerEddy-S4M in Eddy-S4M. Bellow is its PIN spec

1 : Vcc

2 : D -

3 : D +

4 : GND

2,7,4 RESET switch

Pin	Definition	Description	I/O
		Polling Input signal continually from External Reset key, implement as below with checking the constant	
PC16	nRESET	time of "Low."	IN
		Less than 5 seconds: General reset function.	
		More than 5 second: Factory Default function.	

2.7.5 J4, 5: Expansion Header

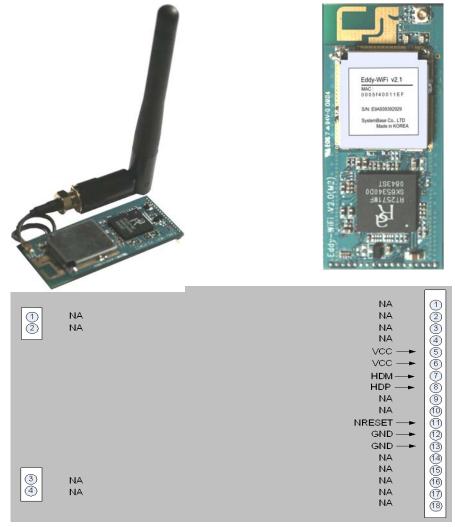
Provide most function of eddy-S4M with pin connector.
You can confirm the function with direct conjunction to Eddy-S4M-DK.

J4

Pin	Signal	Pin	Signal
1	DTxD	2	DRxD
3	TxD0#	4	RxD0#
5	RTS0	6	CTS0
7	DTR0	8	DSR0
9	DCD0	10	RI0
11	TxD1#	12	RxD1#
13	RTS1	14	CTS1
15	3.3V	16	3.3V
17	P3_TX+	18	P3_TX-
19	P3_RX+	20	P3_RX-
21	P4_TX+	22	P4_TX-
23	P4_RX+	24	P4_RX-
25	DDM	26	DDP

J5

Pin	Signal	Pin	Signal
1	LAN_RX+	2	LAN_TX+
3	LAN_RX-	4	LAN_TX-
5	LAN_Speed	6	LAN_LINK
7	PA5	8	PA22
9	PA30	10	NC
11	PB0	12	PB1
13	PB2	14	PB3
15	5V	16	5V
17	PB12	18	PB13
19	PB16	20	PB17
21	PB18	22	PB19
23	PB20	24	PB21
25	PB30	26	PB31


	ı		T
27	DM2	28	DP2
29	DM3	30	DP3
31	GND	32	GND
33	DM4	34	DP4
35	SDDATA0	36	SDDATA1
37	SDDATA2	38	SDDATA3
39	SDCMD	40	SDCLK
41	SDCDN	42	SDWP
43	TWCK	44	TWD
45	RDY#	46	nRESET(IN)

27	PC0	28	PC1
29	PC2	30	PC3
31	GND	32	GND
33	PC5	34	PC9
35	PC10	36	PC12
37	PC13	38	PC14
39	PC15	40	PC17
41	PC18	42	PC19
43	PC20	44	PC24
45	PC25	46	NRST(OUT)

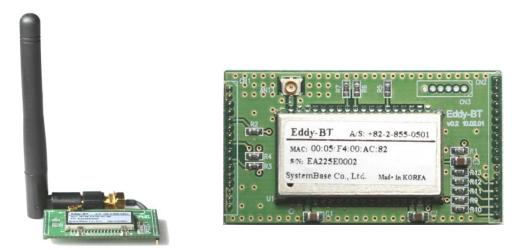
2.8 Eddy-WiFi v2.1

Linking to Eddy-CPU and Eddy-S4M, Eddy-WiFi module enables to use various types of serial device (Security equipment, telecommunications device, modem, data output devices, industrial instruments etc.) through wireless LAN. Eddy-WiFi module supports IEEE 802.11b/g.

For application development, please refer to WiFi.c, the source code for Eddy-WiFi module.

LEFT	Description
1	NA
2	NA
3	NA
4	NA

RIGHT	Description
1	NA
2	NA
3	NA
4	NA
5	VCC(3.3V)
6	VCC(3.3V)
7	USB Host Data(-)
8	USB Host Data(+)
9	NA
10	NA
11	H/W Reset
12	Ground
13	Ground
14	NA
15	NA
16	NA
17	NA
18	NA



2.9 Eddy-BT v2.1

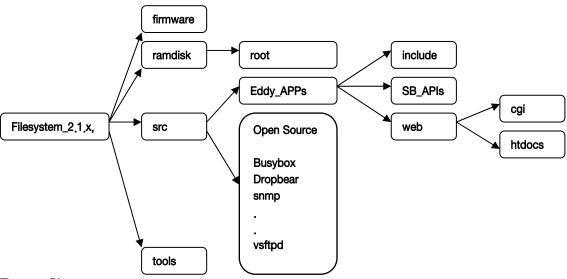
Eddy-BT module is based on Bluetooth 2.0 and supports communication distance of up to 1,000m. Linking to Eddy-CPU and Eddy-S4M, Eddy-BT module enables communication with various types of Bluetooth device in Bluetooth method. Eddy-BT module's communication interface supports serial method. To connect to Eddy-CPU, Eddy-S4M, it uses 4th serial port.

Since it is not considered to use Eddy-BT in Eddy's operating environment, it can lose data in case of using HW Flow Control. (4th port is composed to support RS422 or RS 485. Since it uses RTS/CTS signal line in Auto Toggle method, it can not be used for HW flow control of RS232.)

To use Eddy-BT right, please refer to test_bluetooth.c, the sample source code.

LEFT	Description
1	NA
2	NA
3	NA
4	VCC(3.3V)
5	Factory Reset
6	UART TXD
7	UART RXD
8	UART RTS
9	UART CTS
10	Pairing Signal
11	H/W Reset
12	NA
13	NA
14	Ground
15	Ground
16	Ground

RIGHT	Description
1	NA
2	NA
3	NA
4	NA
5	VCC(3.3V)
6	VCC(3.3V)
7	NA
8	NA
9	NA
10	NA
11	H/W Reset
12	Ground
13	Ground
14	NA
15	NA
16	NA
17	NA
18	NA


Chapter 3. Development Environment

This chapter explains the process of application programming and other important notes. SDK's directory structures are as follows.

Note

All material related to Eddy including documentation, reference sources and utilities are periodically updated to www.embeddedmodule.com without prior notice. Please visit and download latest updates from the site.

3.1 Source code directory structure

Firmware Directory

Boot Loader, kernel, filesystem, image are stored.

Ramdisk Directory

Filesystem images are created here root: Linux Filesystem for Eddy is stored.

Tools Directory

Tools used for creating image files is stored.

Src Directory

Source codes of applications in Eddy are stored.

Please refer Chapter4. Compiling Application for the detail description of src directory.

Eddy-APPs folder contains the source code of the basic application.

Other folders contain open sources for Eddy applications.

3.2 Language

Eddy-DK application should be composed with C language. All example source codes provided are composed in C language. You can use more than one source file if you are using C programming Language. If you are familiar with programming with ANSI C, there will be no difficulties creating applications for Eddy.

3.3 Development Environment

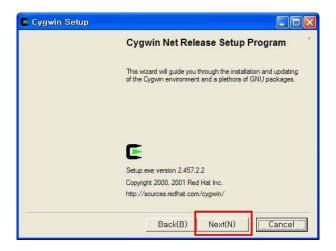
Eddy DK requires Windows or Linux host system. Officially supported OSs are as follows.

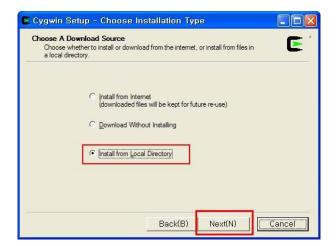
Windows	Linux
	Red Hat 9.0
	Fedora Core 4, 5, 6
Windows XP SP2	SUSE Linux Enterprise Server 10.2
Windows 2000	Ubuntu Linux 6,x, 7,x
Windows 2003	Debian Linuv 4.0
	CentOS 4.5
	Asianux edition 3

3.4 Installing on Windows OS

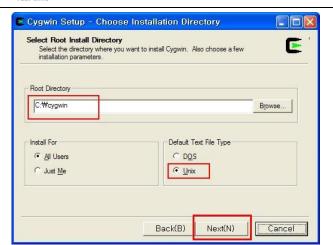
This chapter will describe how to install Eddy Development Environment on Windows host.

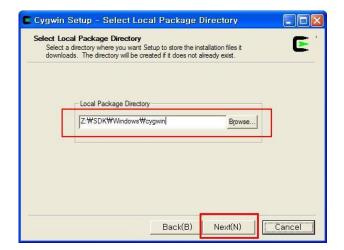
The explanation of this manual based on Windows XP.

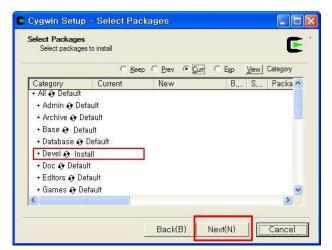

To establish Eddy's integrated development environment, LemonIDE, please refer to "LemonIDE_User_Guide" for further instructions.


3.5 Installation of Cygwin

To execute LemonIDE on Windows hosts, some of libraries from Linux system are required. Cygwin is a virtual Linux program for Windows. To install Cygwin, please refer to Cygwin-Setup zip in SDK/Windows folder of Eddy DK CD. After unzipping this file in Windows PC, run Setup exe file.




Select "Install from Local Directory" and click "Next".



Select installation directory as "c:\cygwin".

Select a folder which Cygwin-Setup zip is unzipped.

If it is unzipped in C:\cygwin-Setup folder, select "c:\cygwin-setup" folder..

Select the package to install.

Only select "Devel" as left picture.

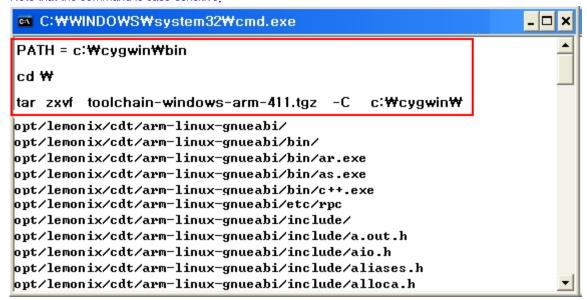
Make sure the option changed to "Install" from "Default:

3.6 Configuration of Windows Environment Variables

Path should be added in order to refer required Eddy libraries in Windows environment.

Select "Desktop" → "My Computer" → Right click → "Properties" → select "Advanced" tab → click "Environment Variables" .

Select Path from System Variable and add the following line on the very beginning


c:\cygwin\bin;

3.7 Installation of Toolchain

Toolchain compiles source codes composed on Windows environment and make it executable on the target, Eddy. Eddy. Toolchain installation file, "toolchain-windows-arm-411.tgz", can be found under SDK/Windows folder in Eddy DK's CD. Copy the file to the root directory of "C:", and unzip the file from Windows command line as below.

Toolchain should be installed to "c:\cygwin\opt\lemonix\cdt".

Note that the command is case-sensitive

3.8 Installation of Eddy DK Source

Install Eddy DK Source. DK Source file, "filesystem_2,x,x,x,tar,gz", can be found under SDK folder of Eddy DK's CD. Copy the file to the root directory of "C:", and unzip the file from Windows command line as below. DK Source should be installed to c:\eddy_DK_2xx".

Note that the command is case sensitive.


```
PATH = c:\cygwin\bin

cd \\
tar zxvf filesystem_2.1.x.x.tar.gz -C c:\

filesystem_2.1.x.x/tools/
filesystem_2.1.x.x/tools/genext2fs.exe
filesystem_2.1.x.x/tools/util-linux-2.12r/
filesystem_2.1.x.x/tools/util-linux-2.12r/
filesystem_2.1.x.x/tools/util-linux-2.12r/fdisk/
filesystem_2.1.x.x/tools/util-linux-2.12r/fdisk/fdisksgilabel.o
filesystem_2.1.x.x/tools/util-linux-2.12r/fdisk/common.c
filesystem_2.1.x.x/tools/util-linux-2.12r/fdisk/disksize.o
filesystem_2.1.x.x/tools/util-linux-2.12r/fdisk/disksize.o
filesystem_2.1.x.x/tools/util-linux-2.12r/fdisk/fdiskaixlabel.h
filesystem_2.1.x.x/tools/util-linux-2.12r/fdisk/disksize.c
```

3.9 Installing on Linux

This chapter will describe how to install Eddy Development Environment on Linux host.

The explanation of this manual based on Fedora Core 5.

To establish Eddy's integrated development environment, LemonIDE, please refer to "LemonIDE_User_Guide" for further instructions.

3.10 Installation of Toolchain

Toolchain compiles source codes composed on Linux environment and make it executable on the target, Eddy. Toolchain install file, "lemonide_linux_10x.tar.gz", can be found under SDK/linux folder in Eddy DK's CD. Toolchain should be installed to /opt/lemonix.

Note that the command is case sensitive.

Note

Carry out all install procedures under the super user privileges. Example below assumes that CDROM is mounted on /mnt/cdrom

If CDROM is mounted on a different location, path displayed below will bear difference.

```
# cd /
# tar -zxvf /mnt/cdrom/SDK/linux/lemonide*.tar.gz -C /
```

3.11 Installation of Eddy DK Source

Install the entire source of Eddy DK Eddy DK Source file, "Filesystem 2 x x x tar gz", can be found under SDK

folder on Eddy DK's CD.

Install Eddy DK Source as shown below. The eddy_DK_2xx folder will be created after the installation.

```
# pwd
/home/shlee
# tar -zxvf filesystem_2.1.x.x.tar.gz
```

Unzip the file. If Eddy_DK_2xx folder is created, the installation is completed. The below shows the contents of Eddy_DK_2xx folder.

```
[root@localhost eddy-DK_2xx]# ls -al
Total 32
drwxr-xr-x 6 shlee work 4096 Nov 26 14:43 .
drwxrwxr-- 26 shlee work 4096 Nov 30 21:25 ..
drwxr-xr-x 4 shlee work 4096 Noc 26 14:46 src
-rwxr-xr-x 1 shlee work 2822 Nov 26 14:43 Env.sh
-rwxr-xr-x 1 shlee work 171 Nov 26 14:43 Make.check
drwxr-xr-x 2 shlee work 4096 Nov 29 17:50 firmware
drwxr-xr-x 5 shlee work 4096 Nov 26 14:47 tool
```

3.12 Removing Development Environment

Development Environment can be removed by simply deleting the folder where installed files are located.

3.13 Removing Windows Development Environment

Delete the folders where DK Source and Cywin are installed.

3.14 Removing Linux Development Environment

rm -rf filesystem_2.1,x.x ; Removal of Eddy DK Source # rm -rf /opt/Lemonix ; Removal of Eddy ToolChain

Chapter 4. Compiling of Application Program

4.1 Program Type

This chapter explains how to compose application program, load to Eddy to execute and store it to flash memory of Eddy as a firmware.

Application programs running in Eddy are made of Device Server functions. SystemBase does not provide part of application source running in Device server. Developers can refer to open source, socket and serial provided as sample source. Since these are optimized to enable application, developers can use its advantage. The followings are open sources in src directory.

Folder Name	Description									
busybox-1.5.0	Linux Utility containing basic commands for the shell									
dropbear-0.50	SSH (Secure Shell) Server									
gdbserver	Remote debugging program for LemonIDE									
	(Only executable file provided.)									
mtd-util	Management program for Mtd									
openssl-0.9.7c	OpenSSL Library (SSL type)									
matrixssl-1-8-3	Matrixssl program (SSL type)									
thttpd-2.25b	HTTP Server									
vsftpd-2 _. 0 _. 5/	FTP Server									
ddns-1.8	DDNS Server									
ethtool-6	Ethernet based network testing program									
netkit-ftp-0 _. 18	ftp client									
target-agent	Program helps to upload, download and execute user's programs,									
	linked with LemonIDE. The source code not provided.									
net-snmp-5.4.1	SNMP V1/V2/V3 program									
lptables-1.3.7	Bridge program for NAT function of LAN port									
RT73	WiFi Device Driver									
Wireless_tools,29	Wireless support Tool Applications									

In case you make new application program, refer to sample source in Eddy_APPs folder. Among the programs in Eddy_APPs directory, source for device server application is not provided. So, refer to source code for various purposes provided as sample.

File Name	Description	Source Availability
eddy.c	Program which runs first when boots up Eddy. It also operates Eddy as configuration.	0
pinetd _. c	Eddy's most significant program which runs and monitors subordinate programs	0

	In case of building new application, if it is registered in this file, the registered application is running when booted.	
com_redirect.c	Program which enables to recognize Eddy's serial port as its Com port on Windows PC in network.	Х
tcp_client.c	Program which connects to server and exchanges data between serial port and socket.	Х
tcp_server.c	Program which waits for socket connection and exchanges data between serial port and socket.	Х
detect_c	Program that interworks with Portview's detector.	Х
Portview.c	Agent of NMS program for Windows, Portview, provided by SystemBase	Х
tcp_broadcast.c	As a multi TCP server function, it supports client connection up to 5 and broadcasts serial data to the whole client.	Х
tcp_multiplex.c	As a multi TCP server function, it supports client connection up to 5 and transmits serial data to each client.	Х
udp.c	UDP server and client program which exchanges data between UDP socket and serial port.	Х
wifi _. c	WiFI Operating Source This sample source reads Config file of Flash and runs WiFi as the registered setting.	0
test_bluetooth.c	Bluetooth Application Sample Source Sample source of Eddy-BT module connected to Eddy-CPU, Eddy-S4M.	0
test_read_config.c	Flash Configuration Read/Write sample source	0
test_serial.c	Serial port application sample source This sample source opens port number appointed to Argment and retransmits the received data to the other socket.	0
test_serial_to_lan-1.c	serial to lan communication application sample source This sample source reads Config file information of Flash and waits for TCP socket connection. After connection, it exchanges data between serial and socket port.	0
test_serial_to_lan-2.c	serial to lan communication application sample source This sample source reads Config file information of Flash and tries TCP connection to the registered server. After connection, it exchanges data between serial and socket port.	0
test_tcp_server.c	TCP socket communication application sample source This sample source waits for TCP connection to socket number appointed to argment and retransmits the received data to the other socket.	0
test_tcp_client.c	TCP socket communication application sample source This sample source tries connection to IP address and socket number of the server appointed to argment. After connection, it retransmits the received data to the other socket.	0
test_udp_server.c	UDP socket communication application sample source This sample source waits for UDP connection to socket number appointed to argment and retransmits the received data to the	0

	other socket.	
test_udp_client.c	UDP socket communication application sample source This sample source tries UDP connection to IP address and socket number of the server appointed to argment. After connection, it retransmits the received data to the other socket.	0
def _. c	Eddy Configuration program Program which links to telnet and enables configuration of Eddy	0
upgrade.c	Firmware update program	0
testdk.c	Eddy-DK, Eddy-S4M-DK Test Program	0
ddns_agent.c	Program that delivers Eddy IP information to DDNS server	0
test_gpio_led.c	GPIO LED Test Program (Only Eddy-DK)	0
test_gpio_pin.c	GPIO Pin Test Program (Only Eddy-DK)	0
test_adc.c	ADC (Analog Disgital Converter) Test Program	0
test_sio.c	Serial Port Test Program	0
test_rtc.c	RTC (Real Time Clock) Test Program	0
test_dio.c	DIO (Digital Input Output) Test Program (Only Eddy-DK)	0
test_keypad.c	Key Pad Test Program (Only Eddy-DK)	0
test_mmc.c	SD Memory Test Program	0
test_lcd.c	LCD Test Program (Only Eddy-DK)	0
test_nand.c	NAND Flash Test Program (Only Eddy-DK)	0
test_spi_eeprom.c	EEPROM Test Program linked to SPI interface(Only Eddy-DK)	0
/include	Directory where there is a header file for application	0
/SB_APIs	Library directory in Eddy	Х
/web	Html code of web and CGI source directory running in Eddy	0

4.2 Writing Application Program

This chapter shows how to write an application program for Eddy.

First, create a "hello_world_c" file under the "scr/Eddy_APPs" directody.

4.3 Writing Makefile

To compile an application program, compile information of the application program has to be registered on the Eddyy_APPs/Makefile directory. The below is description of "Makefile" under directory of src/Eddy_APPs/.

The picture blow shows the environment setting area for an application program compile.

Add a name under the "TARGET" highlighted as red, and register to the compile environment.

```
TARGET
          = eddy
                        pinetd
                                   def
                                                 ddns_agent
           portview
                      upgradetftp
                                    detect
upgrade
                                                             \
tcp_server tcp_client tcp_multiplex tcp_broadcast
                      hello_world
udp
           rt_test
udp:udp.o
        rm -f $@
        $(CC) $(CFLAGS) $(LDFLAGS) $(IFLAGS) -0 $@ $ $@.o $(LIBS)
        $(STRIP) $@
Hello_World: Hello_World.o
        Rm -f $@
        $(CC) $(CFLAGS) $(LDFLAGS) $(IFLAGS) -0 $@ $ $@.0
         $(STRIP) $@
```

4.4 Application Program Compile

Compile the application program to execute on Eddy after registering the compile environment to the "Makefile" .

4.5 Compiling on Windows

Enter "make" command through cmd(command prompt) on the directory where "Makefile" is located. As shown below, if a compile is successfully completed, execution file named "Hello_World" would be created. Of course, as this file was cross-compiled, it can not run on Windows environment. Upload this file to Eddy using a FTP to execute the file on Eddy, (Files uploaded with FTPs will not permanently saved on Eddy.).

This will be further explained on the next chapter, Chapter 5 Creating Firmware.


```
C:\eddy_DK_2xx[\src/Eddy_APPs\) make hello_world

/opt/lemonix/cdt/bin/arm-linux-gcc -O2 -g -Wall -Wno-nonnull -c -o Hello_World_o Hello_World_c

/opt/lemonix/cdt/bin/arm-linux-gcc -L/opt/lemonix/cdt/lib -L/opt/lemonix/cdt/bin Hello_World_o -o

Hello_World

C:\eddy_DK_2xx[\src/Eddy_APPs\) Is

Hello_world SB_APIs def_c eddy kt_c pinetd portview_o

tcp_client_c tcp_client tcp_multiplex_o . . . .
```

4.6 Compiling on Linux

To compile a source file on Linux environment, enter "make" command on the directory where "Makefile" is located. As shown below, if a compile is successfully completed, execution file named Hello_World would be created. Of course, as this file was cross-compiled, it can not run on Linux environment. Upload this file to Eddy using a FTP to execute the file on Eddy, (Files uploaded with FTPs will not permanently saved on Eddy.).

This will be further explained on the next chapter, Chpater 5 Creating Firmware.

```
[shlee@localhost Eddy APPs]$make hello world
/opt/lemonix/cdt/bin/arm-linux-gcc -O2 -g -Wall -Wno-nonnull -c -o hello_world.o hello_world.c
/opt/lemonix/cdt/bin/arm-linux-gcc -L/opt/lemonix/cdt/lib -L/opt/lemonix/cdt/bin hello_world.o
.....
[shlee@localhost Eddy_APPs]$ Is
Hello World*
               SB_APIs/
                                 def_c*
                                            eddy*
                                                                   pinetd*
                                                      kt.c
                                                                                portview_o
server*
                 tcp_client*
                                   tcp_multiplex.o tcps*
                                                           upgrade*
```

4.7 Compiling with LemonIDE

LemonIDE is an IDE(Integrated Development Environment) based on Eclipse platform and provides an intuitive GUI interface. LemonIDE can be used in both Windows and Linux environments. Source coding, compile, remote debugging and creating a firmware image can be all carried out with LemonIDE.

Refer to "LemonIDE_User_Guide" for detailed information.

4.8 Running Application on Eddy

To run an application on Eddy, there are several methods. First method is to convert an application as a firmware and loads it into the flash memory area and execute. However, this method is not recommended for developing phase of application, since it is time consuming task. Second method is to load and execution file of an application to RAM type file system by using the FTP Server on Eddy DK, and execute it from there. This method is suitable for developing phase of application; however the application loaded to Eddy will be deleted when the power is disconnected.

The LemonIDE integrated developing environment provides advanced solution. LemonIDE debugging tool supports the direct transmission of compiled applications to Eddy. By using this tool, the user can execute and check the result instantly on site.

If you wish to use LemonIDE, please refer to "LemonIDE_User_Guide".

4.9 Uploading and Executing on Eddy

Connect to Eddy by using FTP.

ID and password for FTP server are same as the one using with telnet connection.

The example below shows how to upload an example file, "hello_world", to /tmp folder of Eddy on Linux using FTP.

When uploading a file, "bin" command must be entered first for binary mode.

For uploading enter "put (file name) on the command line.

```
[shlee@localhost Eddy_APPs]$ ftp 192.168.0.223
Name (192.168.0.223:shlee): eddy
331 Please specify the password.
Password:
230 Login successful.
ftp> cd /tmp
ftp> bin
ftp> put hello_world
8914 bytes sent in 0.00027 seconds (3.3e+04 Kbytes/s)
ftp> bye
[shlee@localhost Eddy_APPs]$
```

On Windows environment, use FTP program of Windows on the Command Prompt

When the transmission is completed, a user can check the file using Telnet terminal connected Eddy.

The file is executable using "chmod" command; however the mode has to be switched to executable.

After switching to Executable Mode, execute the file by entering "/hello_world".

To terminate a program, press "Ctr" and "C" key simultaneously.

```
# Is
hello_world login,id thttpd.log login.pw
thttpd.pid utmp . . . .

# chmod 777 hello_world

# /hello_world

Welcome to Eddy !
```

4.10 Execute a file on Booting of Eddy

If auto running is not necessary, you can skip this section.

If the application is successfully executed on Eddy, make a firmware image and load to Flash memory of Eddy to execute on booting.

Register the application to "pinetd.c" on the directory of Eddy_APPS.

If "printed_c" is modified, a user must re-compile it by executing "make pinetd" as above example of section 4.4.

Chapter 5. Creating Firmware

On the previous chapter, we explained how to make and compile application program with sample program. This chapter introduces methods to create a firmware which permanently saves the application into the Eddy module and apply it to hardware of Eddy.

5.1 How to Create a Firmware

Firmware image can be created on filesystem_2,x,x,x/ramdisk folder.

Modify "Makefile" on filesystem_2,x,x,x/ramdisk directory to create a firmware image.

Version info, required Ramdisk amount and desired application to copy can be set up on the "Makefile" .

(NOTE)

Provided DK Sources are Linux based. Some commands are not executable on Windows environment. To prevent this problem, a suffix, "exe", has to be added for some utilities after file name as shown below.

```
../tool/genext2fs → ../tool/genext2fs.exe
../tool/mkimage → ../tool/mkimage.exe
```

```
IMAGE=ramdisk
FW NAME
                     eddy-fs-2,x,x,x,bin
                                              → Name and Version Info of Firmware Image
FIRMWARE DIR =
                    ../firmware
                                          → Directory to store created firmware
install:
#@echo "Making ramdisk image..."
#$(TOOL) -b 8192 -d root -D device table txt ramdisk
#_/tool/genext2fs -U -b 5110 -d root -D device_table_txt ramdisk
#_/tool/genext2fs -U -b 7158 -d root -D device_table.txt ramdisk
#__/tool/mkcramfs -q -D device_table_txt root ramdisk
/tool/genext2fs.exe -U -b 10240 -N 1024 -d root -D device table txt ramdisk → Make size of
Ramdisk to 10,240 K and register the device of Eddy/dev as indicated on Devide_table_txt.
gzip -vf9 ramdisk
est -f ramdisk.gz
/tool/mkimage_exe -A arm -O linux -T ramdisk -C gzip -a 0 -e 0 -n $(FW NAME) -d /ramdisk_gz
$(FW_NAME)
test -f $(FW_NAME)
mv $(FW_NAME) $(FIRMWARE_DIR)/
                          → Register the desired application to the directory for copying to Eddy
release:
cp -f ../src/Eddy_APPs/hello_world
                                                root/sbin
cp -f ../src/Eddy_APPs/eddy
                                                root/sbin
```



```
cp -f ../src/Eddy_APPs/com_redirect
                                                   root/sbin
cp -f ../src/Eddy_APPs/tcp_server
                                                   root/sbin
cp -f ../src/Eddy_APPs/tcp_client
                                                   root/sbin
cp -f ../src/Eddy_APPs/tcp_broadcast
                                                  root/sbin
cp -f ../src/busybox-1.5.0/busybox
                                                  root/bin
cp -f ../src/dropbear-0.50/dropbear
                                                   root/usr/local/sbin
cp -f ../src/dropbear-0.50/dropbearkey
                                                  root/usr/local/sbin
cp -f ../src/ethtool-6/ethtool
                                                   root/usr/local/sbin
cp -f ../src/net-snmp-5.4.1/agent/snmpd
                                                         root/usr/local/sbin
```

List of task on the "Makefile" options are as follows;

Make release ; Copy modules registered on the release to Ramdisk area.

Make install ; Create a Filesystem to a firmware image for using on Eddy.

If the modification of "Makefile" is completed, execute "make release and "make install" in turns and create a Firmware image.

Created firmware is stored on the "FIRMWARE_DIR" directory stated on the "Makefile". On Windows, use cmd(command prompt) to carry out procedures explained on Linux.

Makefile options are as follows.

Make release ; copy module in release to ramdisk area

Make cfg ; create firmware image of Eddy environmental files in ramdisk/flash

Make install ; create a firmware image of Eddy's Filesystem

If changes to Makefile are complete, use "make install" command to create firmware image. Firmware will be created in "FIRMWARE_DIR" directory defined in Makefile.

On Windows, use cmd(command prompt) to carry out procedures explained on Linux.

```
[shlee@localhost ramdisk]$ make release
.
.
[shlee@localhost ramdisk]$ make install
.
```



```
[shlee@localhost ramdisk]$ ls _,/firmware
-rwxr-xr-x ------eddy-bl-2,x,x,x,bin
-rwxr-xr-x -----eddy-bs-2,x,x,bin
-rwxr-xr-x -----eddy-os-2,x,x,bin
-rwxr-xr-x -----eddy-fs-2,x,x,bin
-rwxr-xr-x ------eddy-fs-2,x,x,bin
```

As shown in the picture above, a new firmware file "eddy-fs-2,x,x,x,bin" has been created. Now you have to upload the firmware image to Eddy via Web or FTP, save it to Eddy's flash memory, and reset Eddy. Then Eddy will run as the loaded firmware settings.

5.2 Firmware Upgrade

Upload created firmware file to Eddy and save on the Flash Memory.

Eddy provides four ways of upgrading method.

FTP	Upload a firmware image using FTP program, and execute the upgrade										
	command to save it to the Flash memory using Telnet.										
Web Browser	Connect to Web server of Eddy and save a firmware to the Flash memory.										
Web Blowsei	Please refer Eddy_User_Guide for detail information.										
	Use the boot loader which operates on booting to save a firmware through										
Boot Loader	the debugging port of Eddy DK board.										
	Please refer "the chapter 9: System Recovery" for detail.										
USB	Use USB client port of Eddy DK board to upload a firmware.										
USB	Please refer "the chapter 9: System Recovery" for detail.										

This section explains how to upload a firmware using a FTP.

2104287 bytes sent in 0.47 seconds (4.3e+03 Kbytes/s)

[shlee@localhost firmware]\$ ftp 192,168,0,223

On Windows, FTP can be used in cmd(command prompt) to carry out upload process.

Upload the created firmware, "eddy-fs-2,x,x,x,bin", to the /tmp directory of Eddy, using an FTP.

Connected to 192,168,0,223.

Name (192,168,0,223:shlee): eddy
331 Please specify the password.

Password:
230 Login successful.

ftp> cd /tmp
250 Directory successfully changed.

ftp> bin
200 Switching to Binary mode.

ftp> put eddy-fs-2,1,x,x,bin
local: eddy-fs-2,x,x,bin remote: eddy-fs-2,x,x,x,bin
227 Entering Passive Mode (192,168,0,223,195,50)
150 Ok to send data.
226 File receive OK.

ftp> bye


```
221 Goodbye.
[shlee@localhost firmware]$
```

Use Telnet to check "eddy-fs-2 x x x bin" file is in the /tmp directory.

Use "upgrade eddy-fs-2 x x x bin" command to update the firmware.

```
# pwd
/tmp
# ls eddy-fs-2,x,x,x,bin
eddy-fs-2,x,x,x,bin
#
# upgrade eddy-fs-2,x,x,x,bin
FileSystem Erase ... 2388341 Bytes
FileSystem Write ... eddy-fs-2,x,x,x,bin, 2388341 Bytes
2388341 (2388341 bytes)
Flash Write OK
Flash Verify OK
...
```

In order for the updated firmware to take effect, you need to reboot the module.

After rebooting you can see the sample program running using Telnet program as shown below.

```
Eddy login: eddy
Password:
# cd /sbin
# Is
hello world
                    ifconfig
                                        nameif
                                                            switch root
com_redirect
                    ifdown
                                         pinetd
                                                             sysctl
...
# ps -ef
PID
      USER
                 COMMAND
                  init
1
       root
2
                  [posix_cpu_timer]
       root
3
       root
                  [softirq-high/0]
XX
       root
                  /sbin/hello_world 1
```

Execution result of application program only output to the console port of Eddy. The console is a debug port of Eddy DK board and only execution result of application program is generated.

The result can be seen on a computer screen using a serial emulator program such as hyper-terminal on Windows by connecting the debug port to PC and setting communication speed to 115K, None, 8, 1.

		-

Chapter 6. Library Introduction

This chapter introduces useful libraries and API functions that are applicable with Eddy-Serial DK

6.1 Introduction

All the functions introduced in this chapter are all APIs included in SB_APIs of /src/Eddy_APPs/SB_APIs directory. You also need to mention this library in the Makefile. All sample source codes accompanied with Eddy-DK use this library, and you can see the source codes and Makefile for more information.

6.2 Makefile

Library is in /src/Eddy_APPs/SB_APIs/ directory, as a form of SB_API.a.

You need to specify in the Makefile in order to use this library, so please refer to the Makefile inside /src/Eddy_APPs/ folder

6.3 System functions

Timer and delay functions needed for making application program.

SB_GetTick

Function Returns time measured after Eddy has been booted in msec.

Format Unsigned long SB GetTick (Void);

Parameter None

Returns 0 ~ 4,294,967,295

Notice Returned value is system tick counter in msec unit.

After it reaches the maximum value 0xfffffff of unsigned long type, it

starts from zero again - which is about period of 50 days.

SB_msleep

Function Delays in msec unit.

Format void SB_msleep (int msec);

Parameter msec Configure delay time in msec unit.

Returns none

Notice Delays in exact msec unit.

SB_AliveTime

Function Returns time measured after Eddy has been booted in day, hour,

minute, and second.

Format void SB AliveTime (int *day, int *hour, int *min, int *sec);

Parameter *day Days Eddy has been operationg (0 ~)

*hour Hour (0 ~ 23)

*min Minute (0 ~ 59)

*sec Second (0 ~ 59)

Returns None

Notice

6.4 Eddy Environment Function

Environment functions related with Eddy File System which gives information such as Eddy's version, environment configuration, version, etc.

SB_GetVersion

Function Reads version of O/S, file system, and bootloader ported to Eddy in string

type.

Format void SB_GetVersion (int type, char *version);

Parameter type Specifies the version function reads.

'B' : Eddy' s bootloader version'K' : Eddy' s O/S version'F' : Eddy' s file system version

Version Pointer where version information string will be stored.

Returns None

Notice Version information will be read like "1.0a."

BootLoader and O/S will be provided by SystemBase; therefore these cannot be changed. In case file system is programmed by the user, the

version can be set by the user.

When the parameter type other than 'B', 'K', 'F' are called, the

function will return "0.00" as version information.

SB_ReadConfig

Function Reads Eddy's operating environment configuration file.

Format void SB_ReadConfig (char *FileName, char *Dest, int Size);

Parameter FileName File name that includes the path of the file to be read.

*Dest Pointer to the buffer in which the configuration file will be

stored.

Size The size of the file to be read.

Returns 1 if succeeded, -1 if failed.

Notice Configuration file in Eddy is stored in /etc. /flash Configuration changes

made through web or telent is stored here and all Eddy applications

operates with respect to configuration files here.

SB_WriteConfig

Function Saves Eddy's operating environment configuration information into file.

Format void SB_WriteConfig (char *FileName, char *Source, int Size);

Parameter FileName File name that includes path of the file to be written.

Source Pointer to the struct buffer in which the configuration

information is saved.

Size Size of the struct to be written.

Error Code Return 1 if succeeded, -1 if failed.

Returns

Notice

SB_GetSharedMemory

Function Reads pointer to registered shared memory.

Format void *SB_GetSharedMemory (int Key_ID, int Buffer_Size);

Parameter Key_ID ID of registered shared menory

Buffer_Size Size of shared memory used

Returns -1 upon failure.

Notice Portview is Windows application developed by SystemBase which can

remotely monitor Eddy's operating condition. In contrast, SNMP server, which provides basically same function as Portview, is industry's standard monitoring protocol S/W developed by 3Com, Cysco, etc. and sold in

hundreds of thousands of U.S. dollars.

To be compatible with both of the applications, each application in Eddy uses shared memory to store information and send the information to

Portview and SNMP.

Note that PortView and SNMP Agent has to be set in the environment

configuration.

SB_SetSharedMemory

Function Requests shared memory to be used and reads memory pointer.

Format void *SB_SetSharedMemory (int Key_ID, int Buffer_Size);

Parameter Key_ID ID of shared memory to be registered

Buffer_Size Size of shared memory to be used

Returns *buffer_address Memory address of shared memory

Returns -1 upon failure.

Notice In Eddy, this function is used for PortView and SNMP agent.

User can use this function to access shared memory for other purpose.

6.5 Serial functions

These functions are used to handle internal serial port and UART.

SB_OpenSerial

Function Opens serial port.

Format int SB_OpenSerial (int Port_No);

Parameter Port_No Serial port number

0: First serial port1: Second serial port

(Only available for Eddy-CPU, Eddy-DK)

Returns $-1 \sim N$ Opened serial port handle

-1: Open error

N: Opened serial port handle

Notice Eddy provides maximum two serial ports; however for normal model

where Eddy-CPU is mounted, Eddy only provides one serial port.

DK board has two on-board serial ports. User can use both of the serial ports if the user sets DIP switch on DK board to make it recognized as

Eddy-CPU or Eddy-DK.

SB_InitSerial

Function Initialize data communication configuration of serial port.

Format Void SB_InitSerial (int Handle, char Speed, char LCR, char Flow);

Parameter Handle Serial port handle acquired from OpenSerial

Speed Baud rate

0 : 150 BPS, 300 BPS 2: 600 BPS 3 1200 BPS: 4 : 2400 BPS 5 4800 BPS 6 : 9600 BPS 7 : 19200 BPS 8 : 38400 BPS 9 : 57600 BPS 10: 115200 BPS 230400 BPS 11 : 12: 460800 BPS 13 : 921600 BPS

LCR XXPPSDD (8 bit binary)

P P: Parity Bits

0 0 : None, 0 1 : Odd, 1 0, 1 1: Even

S: Stop Bits

0:1 bits, 1:2 bits

D D: Data Bits

0 0 : 5 bits, 0 1 : 6 bits 1 0 : 7 bits, 1 1 : 8 bits

FlowControl Types of flow control

0: no flow control
1: RTS/CTS flow control
2: Xon/Xoff flow contorl

Returns Notice None

SB_SendSerial

Function Send data to the serial port.

Format Void SB_SendSerial (int handle, char *data, int length);

Parameter handle Handle to serial port or socket

data Pointer to the data to be sent length Length of the data to be sent

Returns None

Notice When the transmit buffer is full, this function will retry up to 10 time in

20 msec period; it will return after transmission is completed.

SB_ReadSerial

Function Reads data from the serial port.

Format int SB_ReadSerial (int handle, char *data, int length, int wait_msec);

Parameter handle Handle to serial port.

data Buffer pointer where the read data will be saved.

length Size(length) of the buffer memory

wait_msec Time the function will wait for next received data after

reading from read buffer.

Returns $0 \sim n$ Size of the read data

Notice When wait_msec is set to 0 this function will only read data from serial

receive buffer; when set larger than 0, it will read data from serial receive buffer, wait for time specified in msec unit, and then continue

reading data from serial port as one packet.

The maximum size of the data is same as buffer's size, i.e. length. You can use value obtained from SB_GetDelaySerial function or value

manually calculated for wait_msec.

SB_GetMsr

Function Reads MSR register value from serial port

Format Char SB_GetMsr (int handle);

Parameter handle Handle to serial port.
Returns Value MSR Register 값

Bit 7 6 5 4 3 2 1 0 Bit0: CTS change Bit1: DSR change Bit2: RI change Bit3: DCD change

Bit4: CTS (0:Low, 1:High)
Bit5: DSR (0:Low, 1:High)
Bit6: RI (0:Low, 1:High)
Bit7: DCD (0:Low, 1:High)

Notice

SB_SetRts

Function Controls RTS signal line of the serial port.

Format Void SB_SetRts (int handle, int value);

None

handle Handle to serial port.

Parameter Value 0: off Set RTS signal to low.

1: on Set RTS signal to high.

Returns

Notice

SB_SetDtr

Function Controls DTR signal line of the serial port.

Format Void SB_SetDtr (int handle, int value);

handle Handle to serial port.

Parameter Value 0: off Set DTR signal to low.

1: on Set DTR signal to high.

Returns

Notice

None

6.6 Ethernet functions

These functions deal with the network-related information of Eddy.

These functions are optimized socket API for Eddy, and user can use other API for development by using his or her own POSIX compatible standard socket API.

SB_Getlp

Function Reads IP address assigned to Eddy.

Format Unsigned int SB_Getlp (char *interface);

Parameter Interface Network interface name.

"eth0" for WAN port.

"eth1" for LAN port.

Returns Unsigned int returns IP address in unsigned int type.

Notice Note that the function returns operating IP address, not the IP address

configured in Eddy. When Eddy is operating as a DHCP Client, this function

read network IP address assigned from DHCP server.

Please see below for transforming IP address into string type.

struct in_addr addr;

addr_s_addr = SB_Getlp ();

printf ("IP Address : %s ", inet_ntoa(addr));

SB_GetMask

Function Reads subnet mask address assigned to Eddy.

Format Unsigned int SB_GetMack (char *interface);

Parameter Interface Interface name to be read

> "eth0" for WAN port. for LAN port. "eth1"

Returns Unsigned int Returns mask address in unsigned int type

Please see SB Getlp also Notice

SB_GetGateway

Function Reads gate address assigned to Eddy.

Format Unsigned int SB_SetGeteway(void);

Parameter None

Returns Unsinged int Returns gate address in unsigned int type

Notice Please see SB_GetIp also

SB_ConnectTcp

Function Make connection to the server specified as TCP socket.

Format SB_ConnectTcp (char *IP_Address, int Socket_No, int Wait_Sec,

int Tx_Size, int Rx_Size);

Parameter IP Address IP address to connect in string type

> Socket_No Socket number of the server to connect Wait_Sec Wait time for connection (in seconds) Tx_Size Tx buffer size of the socket (in K bytes) Rx_Size Rx buffer size of the socket (in K bytes) Handle number of the connected socket -1 ~ N

Returns

-1: Connection failure

N: Handle number to the connected socket

Notice If the connection is not made, the function t will try to re-connect for

time specified in wait_sec and return.

Tx,Rx_Size are size of the socket buffer size. These can be set from 1 to

If it is set to number smaller than 1, size will 4kbytes as default; number

larger than 64 will set size of the buffer to 64kbytes as default.

SB_ListenTcp

Function Wait for connection to TCP socket

Format Int SB_ListenTcp (int Socket_No, Int Tx_Size, int Rx_Size);

Parameter Socket No TCP socket number to wait for connection

Tx_Bytes Tx buffer size of the socket (in K bytes)

Rx Bytes Rx buffer size of the socket (in K bytes)

Returns -1 ~ N Handle number of the TCP socket waiting for

connection

-1: Socket connection waiting failure

N: Handle number of the TCP socket waiting for

connection

Notice As a non-blocking function, this function requests connection and

returns without waiting for connection. SB_AcceptTcp will handle waiting

for connection.

Tx,Rx_Size are size of the socket buffer size. These can be set from 1 to

64.

If it is set to number smaller than 1, size will 4kbytes as default; number

larger than 64 will set size of the buffer to 64kbytes as default.

SB_AcceptTcp

Function Waits for network connection of TCP socket handle.

Format Int SB_AcceptTcp (int Socket_No, int wait_msec);

Parameter Socket_No TCP socket handle number to wait for connection.

(Return value of SB_ListenTcp)

wait_msec Connection standby time (in msec)

Returns -1 ~ N New handle number of connected TCP socket.

-1: Socket error

0: Waiting for connection

N: New handle number of connected TCP socket.

Notice When new handle number is given after connection is made, previous

handle that has been waiting will be closed inside this function.

SB_AcceptTcpMulti

Function Grants network multiple connection of TCP socket handle waiting for

connection.

Format Int SB_AcceptTcpMulti (int Socket_No, int wait_msec);

Parameter Socket_No TCP socket handle number waiting for connection.

(Return value of SB_ListenTcp)

wait_msec Connection standby time (in msec)

Returns -1 ~ N New handle number of connected TCP socket

-1: Socket error

0: Waiting for connection

N: New handle number of connected TCP socket.

Notice When new handle number is given after connection is made, it will not close

previous handle waiting for connection, granting maximum of 1024 socket

connection

SB_ReadTcp

Function Read data from connected TCP socket.

Format Int SB_ReadTcp (int Handle, char *Buffer, int Buffer_Size);

Parameter Handle Handle number of connected TCP socket

Buffer Buffer point where packet data to be read will be saved

Buffer Size Size of the buffer to save

Returns $-1 \sim N$ Size of the data read

-1: Socket error0: No data was readN: Length of the data read

Notice When return code is -1, it means the connection is lost with the client so

user has to close TCP socket handle.

SB_CloseTcp

Function Close TCP socket handle.

Format Int SB_CloseTcp (int Handle);

Parameter Handle TCP socket handle number to close

Returns None

Notice This function shuts down socket handle to finish communication and

closes.

SB_BindUdp

Function Binds UDP socket.

Format Int SB_BindUdp (int Socket_No);

Parameter Socket_No UDP socket number to bind

Returns Handle Handle number bound to UDP socket

-1: Bind failure

N: Handle number bound to UDP socket

Notice

SB_ReadUdp

Function Reads data transmitted to UDP socket bound in network.

Format Int SB_ReadUdp (int Handle, char *Buffer, int Buffer_Size);

Parameter Handle Handle number bound to UDP socket

Buffer Buffer point where packet data to be read will be

Buffer_Size saved

Size of the buffer to save

Returns $-1 \sim N$ Size of the data read.

-1: Socket error0: No data was read

N: Length of the data read

Notice When client sends data to bound UDP socket, this function remembers

client's IP address and socket number for SB_SendUdpServer to use.

SB_SendUdpServer

Function Transmits data to UDP socket. (Server mode)

Format Int SB_SendUdpServer (int Handle, char *Buffer, int Data_Size);

Parameter Handle Handle number bound to UDP socket

Buffer Buffer point where packet data to be sent is saved

Data_Size Size of the buffer to send

Returns None

Notice This function can be called after confirming client's network

information by sending data to UDP socket bound to Eddy from

network; that is, user has to call SB_ReadUdp first.

When data transmission has to be made first, user has to use

SB_SendUdpClient function.

SB_SendUdpClient

Function Transmit data to UDP socket (Client mode)

Format Int SB_SendUdpClient (int Handle, char *Buffer, int Data_Size,

Char *IP_Address, int Socket_No);

Parameter Handle Handle number bound to UDP socket.

Buffer point where packet data to be sent is saved.

Data_Size Size of the buffer to send.

IP_Address IP address to send data to.

Socket_No Socket number to send data to.

Returns None

Notice This function can be used when user already knows destination network

information to send data to using UDP socket. When data transmission has to be made first, user has to use SB_SendUdpClient function...

6.7 GPIO Functions

GPIO functions control up to 56 GPIO ports provided by Eddy-CPU, 34 GPIO ports provided by Eddy-S4M They can spot 3,3V power or control writes with individual GPIO port.

Pins provided by Eddy CPU/S4M are public pins that can be used to control other devices and are not used solely for GPIO.

Eddy CPU/S4M provides 32 signal lines as 3 port groups; Port A, B, C.

Each port in Port A, B, C can be configured to be used as device or GPIO. They can be configured in Web.

Please refer to sample source "testdk.c' in Eddy_Apps directory for precise usage.

Eddy-CPU GPIO Table

bytes				1	3				2 1 0)													
bits	3	3	2 9	2 8	2 7	2	2 5	2	2 3	2	2	2	1 9	1 8	1 7	1	1 5	1 4	1 3	1 2	1 1	1 0	0 9	0	0 7	0 6	0 5	0 4	0	0 2	0 1	0
bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Port A										*																	នឧ	ន្ល				
Port B	K E Y	K E Y	s 1	s 1	s 0	ន 0	s 0	w 0	ಬಂ	ន ០	K E Y	K E Y	*	*	*	*	DEBUG	D E B U G	*	*	s 3	w w	ಬ	\$ 2	s 1	s 1	ದ ೦	ಬಂ	шшркод	дошчшш	МПРВОМ	Хожапп
Port C						*			K E Y	K E Y	K E Y	K E Y	*	*	N A N D	RESET	L A N	N A N D		L A N		ကက	*	ကက			*	R D Y	A D C	A D C	A D C	A D C

The Yellow parts can all be used as GPIO ports if they are not used as devices.

Section	Description	Number of Ports
S0 ~ S3	Serial Port 1 ~ 4	20
Debug	Debug Port	2
Reset	Reset	1
Rdy	Ready LED	1
ADC	Analog Digital Converter	4
LAN	LAN Port	2
EEPROM	SPI (EEPROM)	4
NAND	NAND Flash	2
KEY	Key Pad	8
*	GPIO & User Peripheral	12

Eddy-S4M GPIO Table

bytes				(1)	3				2 1 0																							
bits	<mark>Ω 1</mark>	3	2 9	2 8	2 7	2 6	2 5	2 4	2	2 2	2	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1	1 0	0 9	8	0 7	0 6	0 5	0 4	3	0 2	0 1	0
bit	7	6	5	4	3	2	1	0	7	6	5	4	Э	2	1	0	7	6	5	4	З	2	1	0	7	6	5	4	3	2	1	0
Port A		*								*																	*					
Port B	*	*									*	*	*	*	*	*													*	*	*	*
Port C							*	*				*	*	*	*		*	*	*	*		*	*				*		*	*	A D C	A D C

Section	Description	Number of GPIO
ADC	Analog Digital Converter	2
*	GPIO & User Peripheral	32

Each port in Port A, B, C can be shown as 32 GPIO ports. So GPIO ports are shown as each bit in 4 byte int variable in program.

```
struct eddy_gpio {
           Unsigned int value
                                                          // Read/write value for each GPIO channel in Port A, B, C
                                      [3];
           Unsigned int mode
                                                          // Configure read/write for each GPIO channel in Port A, B, C
                                     [3];
           Unsigned int pullup [3];
                                                          // Pullup/Pulldown when configuring write
                                                          // for each GPIO channel in Port A, B, C
           Unsigned int enable [3];
                                                          // Whether to use GPIO for each GPIO channel in Port A, B, C
           };
enable: 0 \rightarrow \text{disable} (Do not use as GPIO), 1 \rightarrow \text{Enable} (use as GPIO)
mode: 0 \rightarrow \text{Set} as input mode,, 1 \rightarrow \text{Set} as output mode
value: 0 → Read/Write status is set to Low, 1 → Read/Write status is set to High
pullup: 0 \rightarrow \text{pulldown}, 1 \rightarrow \text{pullup}
```

SETGPIOINIT

Function Initializes ports that will be used as GPIO after boot.

Format void ioctl(int fd, SETGPIOINIT, struct *gpio_struct);

Parameter fd Handle to GPIO device("/dev/eddy_gpio")

gpio_struct Pointer to the struct which stores GPIO table value in

/etc/eddy_gpio.cfg with GPIO configuration file

registered in Web configuration.

struct gpio_struct {

unsigned int value[3]; unsigned int mode[3]; unsigned int pullup[3];

unsigned int enable[3]; };

Returns None

Notice Eddy-CPU provides maximum GPIO ports of 56.

Eddy-S4M provides maximum GPIO ports of 34.

That is when using only WAN and when devices such as serial ports, ADC, Rese, RDY LED··· are used, number of available GPIO ports

decreases.

This command initializes available GPIO ports leaving the devices that are registered in configuration in Pinetd.c after boot so users don't have use this command. When used, users need to be careful.

For instance, if a serial port is enabled through web configuration and Eddy is rebooted, the port acts as a serial port, not a GPIO port. But when this port is forced to be used as GPIO port with this command, the

application that uses this serial port will not operate properly.

SETGPIOMOD_LM

Function Sets Read/Write direction for all Port A, B, C

Format void ioctl(int fd, SETGPIOMOD_LM, int *mode[3]);

Parameter fd Handle to GPIO device("/dev/eddy_gpio")

mode Pointer to the buffer that stores "mode" value for

Port A, B, C.

Bit value 0 means input, 1 means output.

Returns None

Notice Any value is ok for bits that are not set to be used GPIO

GETGPIOMOD_LM

Function Reads Read/Write direction for all Port A, B, C

Format void ioctl(int fd, GETGPIOMOD_LM, int *mode[3]);

Parameter fd Handle to GPIO device("/dev/eddy_gpio")

mode Pointer to the buffer that will store the "mode"

value of Port A, B, C

Returns None

Notice

SETGPIOVAL_LM

Function Sets output value when Port A, B, C are all in output mode.

Format void ioctl(int fd, SETGPIOVAL_LM, int *value[3]);

Parameter fd Handle to GPIO device("/dev/eddy_gpio")

mode Pointer to the buffer that stores the "value" value

of Port A, B, C.

Bit value 0 means Low, 1 means High.

Returns None

Notice Any value is ok for bits that are not set to be used GPIO

GETGPIOVAL_LM

Function Reads Read/Write status value for Port A, B, C

None

Format void ioctl(int fd, GETGPIOVAL_LM, int *mode[3]);

Parameter fd Handle to GPIO device("/dev/eddy_gpio")

mode Pointer to the buffer that will store the "value"

value of Port A, B, C

Returns

Notice

SETGPIOPUL_LM

Function Sets pullup value when Port A, B, C are all in input mode.

Format void ioctl(int fd, SETGPIOVAL_LM, int *value[3]);

Parameter fd Handle to GPIO device("/dev/eddy_gpio")

mode Pointer to the buffer that stores the "pullup" value

of Port A, B, C.

Bit value 0 means Pulldown, 1 means Pullup.

Returns None

Notice Any value is ok for bits that are not set to be used GPIO

GETGPIOPUL_LM

Function Reads Read/Write status value for Port A, B, C

None

Format void ioctl(int fd, GETGPIOVAL_LM, int *mode[3]);

Parameter fd Handle to GPIO device("/dev/eddy_gpio")

mode Pointer to the buffer that will store the "pullup"

value of Port A, B, C

Returns

Notice

SETGPIOMOD_LA SETGPIOMOD_LC

Function Sets Read/Write direction for one of Port A, B, C

Format void ioctl(int fd, SETGPIOMOD_L?, int *mode[3]);

Parameter fd Handle to GPIO device("/dev/eddy_gpio")

mode Pointer to the buffer that stores "mode" value.

Bit value 0 means input, 1 means output.

Returns None

Notice Any value is ok for bits that are not set to be used GPIO

GETGPIOMOD_LA GETGPIOMOD_LC

Function Reads Read/Write direction for one of Port A, B, C

Format void ioctl(int fd, GETGPIOMOD_L?, int *mode[3]);

Parameter fd Handle to GPIO device("/dev/eddy_gpio")

mode Pointer to the buffer that will store the "mode"

value.

Returns

None

Notice

SETGPIOVAL_LA SETGPIOVAL_LB SETGPIOVAL_LC

Function Sets output value when Port is in output mode.

Format void ioctl(int fd, SETGPIOVAL_L?, int *value[3]);

Parameter fd Handle to GPIO device("/dev/eddy_gpio")

mode Pointer to the buffer that stores the "value" value.

Bit value 0 means Low, 1 means High.

Returns None

Notice Any value is ok for bits that are not set to be used GPIO

GETGPIOVAL_LB GETGPIOVAL_LC

Function Reads Read/Write status value for one of Port A, B, C

Format void ioctl(int fd, GETGPIOVAL_L?, int *mode[3]);

Parameter fd Handle to GPIO device("/dev/eddy_gpio")

mode Pointer to the buffer that will store the "value"

value.

Returns None

Notice

SETGPIOPUL_LA SETGPIOPUL_LB SETGPIOPUL_LC

Function Sets pullup value when Port is in input mode.

Format void ioctl(int fd, SETGPIOVAL_L?, int *value[3]);

Parameter fd Handle to GPIO device("/dev/eddy_gpio")

mode Pointer to the buffer that stores the "pullup" value.

Bit value 0 means Pulldown, 1 means Pullup.

Returns None

Notice Any value is ok for bits that are not set to be used GPIO

GETGPIOPUL_LB GETGPIOPUL_LC

Function Reads Read/Write status value for one of Port A, B, C

 $\label{eq:continuous_problem} Format \qquad \qquad void \ \ ioctl(int \ \ fd, \ \ GETGPIOVAL_L?, \ \ int \ \ ^*mode[3]);$

Parameter fd Handle to GPIO device("/dev/eddy_gpio")

mode Pointer to the buffer that will store the "pullup"

value.

Returns None

Notice

6.8 ADC Function

Eddy CPU provides 4 channels of ADC(Analog Digital Converter).

Eddy DK board has temperature and illumination sensor for testing and the status of the sensors can be checked in real time with ADC.

Sample program "Eddy_Apps/test_adc_c" uses ADC interface so users can refer to this source for developing programs.

ADCSETCHANNEL

Function Configures whether to use 4 channels of ADC device or not.

Format void ioctl(int fd, ADCSETCHANNEL, int *channel);

Parameter fd Handle to ADC device("/dev/adc")

mode Pointer to the buffer that stores channel configuration

Returns None

Notice X X X X X X X X (bits)

| | | |----- channel 1 (temperature sensor) | | |------ channel 2 (illumination sensor) | |----- channel 3 (future use) |----- channel 4 (future use)

ADCGETVALUE

Function Reads operation status of 4channels of ADC device

Format void ioctl(int fd, ADCGETVALUE, struct adc_struct *channels);

Parameter fd Handle to ADC device("/dev/adc")

mode Pointer to the buffer that will store channel operation

status

Returns None

Notice Struct adc_value {

};

int ch1_value; int ch2_value; int ch3_value; int ch4_value;

6.9 RTC Function

Eddy CPU provides separate RTC(Real Time Clock) in DK.

Date and time can be configured through program or with Date and rdate provided by Busybox.

Sample program "Eddy_Apps/test_rtc,c" uses RTC device so users can refer to this source for developing programs.

RTC_SET_TIME

Function Configures date and time in RTC device

Format void ioctl(int fd, RTC_SET_TIME, struct tm *tm);

Parameter fd Handle to RTC device("/dev/rtc0")

tm Pointer to struct that stores date and time to be

configured. Compatible with struct tm for Linux

standard time interface.

Returns

Notice

RTC_RD_TIME

Reads date and time from RTC device **Function**

None

None

Format void ioctl(int fd, RTC_RD_TIME, struct tm *tm);

Parameter fd Handle to RTC device("/dev/rtc0")

> Pointer to struct that will store date and time read. tm

> > Compatible with struct tm for Linux standard time

interface.

Returns

Notice

6.10 Debugging Function

Eddy can debug operating condition of each application via Telnet in real time.

The following functions are used to print debug log message to Telnet window when SB_DEBUG of each application is set ON.

SB_LogDataPrint

Function Print each byte of data in hex or ascii code.

Format void SB_LogDataPrint (char *RTx, char *buff, int data_len);

Parameter *RTx Description message of data

> *Buff Buffer address of data to be printed is saved/

Size of data. Data_len

Returns

None

Notice Prints messages to telnet which logged in first.

The message include Eddy's tick counter of 1msec unit and printed in

following form.

SB_LogDataPrint ("Send" "\t12345\n", 8); [191020202] Send 08,1,2,3,4,5,0d,0a 8 =

Tick Counter RTx data_Len buff

Debugging of each application in Eddy can be configured as follows by

using Def command. (Please see def.c) # def po <1/2/all> debug <on/off>

SB_LogMsgPrint

Function Prints in the same format as Printf.

Format void SB_LogMsgPrint (const char *Format, ...);

Parameter *Format Format of Printf

Returns None

Notice Prints messages to telnet which logged in first.

The message include Eddy's tick counter of 1msec unit and printed in

following form.

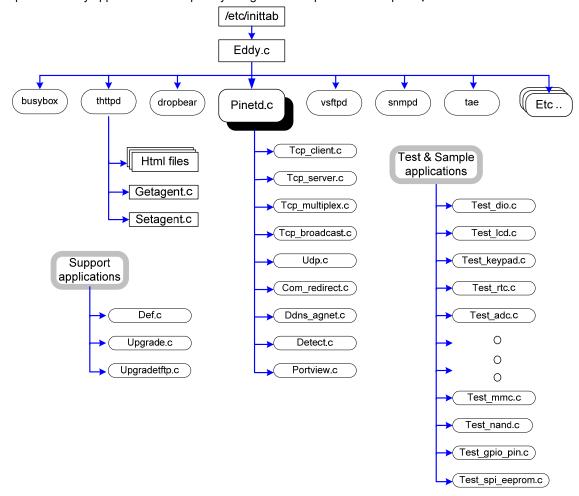
SB_LogMsgPrint ("%s means Real-Time\n" , "Eddy");

[191020202] Eddy means Real-Tile

Debugging of each application in Eddy can be configured as follows by

using Def command. (Please see def.c) # def po <1/2/all > debug <0n/off>

Chapter 7. Eddy Software


This chapter explains software structure ported to Eddy-DK.

Source codes for all application except Com_redirect, gdbserver, tae, SB_APIs library are disclosed. All disclosed source codes may be used as development guide when programming a firmware.

7.1 Software Structure Diagram

Eddy c is the first program to be executed upon the booting. Environment Configure Information configured either by web or def c is loaded next.

All provided Eddy applications developed by using libraries explained on Chapter 6.

7.2 Main Applications

This section explains the most important aspects of Eddy, eddy.c and pinetd.c.

Applications other than these two can be divided into monitoring applications executed by pinetd_.c and user applications manually executed by users. Please refer "4.1 Source Code" for brief explanation of functions of

each application.

7.3 eddy.c Application

Program runs the first after Eddy is booted, it reads the environment configuration saved under /flash folder. This initializes network with configuration information, and runs various daemon program.

If environment file is not present on /flash, it will reset the environment configuration to factory setting.

7.4 Pinetd c Application

It is a daemon program with the highest hierarchy of Eddy run by Eddy.c, which monitors lower processor. It periodically monitors the Reset Switch to detect a factory reset request.

7.5 Other Applications

The list of applications runs according to the defined protocol of each serial port:

tcp_server, tcp_client, com_redirect, tcp_broadcast, tcp_multiplex, udp (udp_server/client)

The list of applications runs to handle external network service independently to serial ports:

portview, detect, ddns_agent

The list of applications can be manually run using telnet.

Def, upgrade, loopback,

The list of applications to test Eddy DK v2.1 board and a device:

test_sio, test_dio, test_lcd, test_keypad, test_spi_eeprom, test_nand, test_sd, test_adc, test_gpio_pin, test_gpio_led

Sample source to build socket, serial port application program is the following.

Test_serial, test_serial_to_lan-1, test_serial_lan-2, test_tcp_server, test_tcp_client, test_udp_server, test_udp_clinet, test_read_config, test_bluetooth

Chapter 8. Handling HTML & CGI

This chapter describes the CGI module for the environment configuration used by HTML files and HTML codes. Provided CGI source and HTML documents are used as Eddy's default firmware, and it is modifiable as needed.

8.1 WEB Configuration

HTML sources for Eddy are located on src/Eddy_APPs/web/htdocs.

CGI sources containing information for HTML is located on src/Eddy_APPs/web/cgi.

getagent_c

It reads environment configuration file of /etc folder and transfers configuration value to the HTML page to show the information on the web browser.

setagent_c

It reads configuration value modified by a user on the HTML page and saves the value to a temporary environment configuration file on /etc.

8.2 Example of HTML Code

The following example shows a part of main html source.

Coding is executed with values handed over from the CGI and linked symbols, due to the coding cannot be done on a HTML using variables like on the C language.

Shown in red below are symbol link which transfers value from getagent_c.

```
(network,html 소스 요약)

(tr bgcolor="#FFFFFF")

(td class="content") IP Address (/td)

(td class="content") (input type="text" size="16" maxlength="16" name="N_IP" value="[v,n_ip]")

(tr bgcolor="#FFFFFF")

(td class="content") Subnet Mask (/td)

(td class="content") (input type="text" size="16" maxlength="16" name="N_MASK" value="[v,n_mask]")

(tr bgcolor="#FFFFFF")

(td class="content") Gateway (/td)

(td class="content") (input type="text" size="16" maxlength="16" name="N_GW" value="[v,n_gw]")

(tr bgcolor="#FFFFFF")

(td class="content") DNS (/td)
```



```
\langle td class="content" \rangle (input type="text" size="16" maxlength="16" name="N_DNS" value="[v,n_dns]" \rangle \langle tr bgcolor="#FFFFFF" \rangle \langle td class="content" \rangle Telnet Service \rangle /td \rangle \langle td class="content" \rangle \langle select name="N_TELNET" \rangle \langle option [v, n_telnet_di] value="0" \rangle Disable \langle (option \rangle \langle option \rangle \langle tr bgcolor="#FFFFFF" \rangle \langle td class="content" \rangle Telnet Service \langle /td \rangle \langle \langle tr bgcolor="maxlength="1" \rangle Telnet Service \langle /td \rangle \langle \langle tr bgcolor="maxlength="maxlength="1" \rangle Telnet Service \langle /td \rangle \langle \lang
```

As shown above there are name and value parts for each record to link with CGI.

Name stores information modified by user in HTML, so that it can save modified value when a user click on the submit button on the lower part of HTML page. Value reads value to getagent to display on HTML page and let user to modify the value as needed.

8.3 Example CGI Code

Eddy-Serial DK has two CGI programs: getagent_cgi and setagent_cgi.

"getagent_c" reads an environment configuration file on /etc/ folder to HTML document, and "setagent_c" saves user-modified information on the HTML document back the environment file on /etc/folder and saves it to flash/, so the user-modified environment configuration is stored.

The following example shows processing part of getagent c to display configuration value to HTML page as the example above.


```
listPutf(list, "n_mask", buff);
 if (cgiFormStringNoNewlines("N_GW", buff, 16) == cgiFormNotFound)
            sprintf(buff, "%d,%d,%d,%d", cfg,system.gateway[0], cfg,system.gateway[1],
cfg.system.gateway[2],cfg.system.gateway[3]);
            listPutf(list, "n_gw", buff);
 }
 else
            listPutf(list, "n_gw", buff);
if (cgiFormStringNoNewlines("N_DNS", buff, 16) == cgiFormNotFound)
{
sprintf(buff, "%d.%d.%d.%d",cfg.system.dns[0], cfg.system.dns[1],
cfg.system.dns[2],cfg.system.dns[3]);
listPutf(list, "n_dns", buff);
}
else
listPutf(list, "n_dns", buff);
cgiFormInteger("N_TELNET", &value, cfg.system.telnet_server);
if (value == 1)
listPutf(list, "n_telnet_di", "");
            listPutf(list, "n_telnet_en", "selected");
}
else
listPutf(list, "n_telnet_di", "selected");
listPutf(list, "n_telnet_en", "");
}
cgiFormInteger("N_WEB", &value, cfg.system.web_server);
if (value == 1)
listPutf(list, "n_web_di", "");
listPutf(list, "n_web_en", "selected");
  }
 else
  {
listPutf(list, "n_web_di", "selected");
listPutf(list, "n_web_en", "");
 }
The following shows processing part of setagent c to save user-modified configuration value.
[Source abstract]
value2 = cgiFormStringNoNewlines("N_IP", buff, 16);
```



```
if (value2 != cgiFormEmpty) convert_address (buff, cfg.system.ip);
value2 = cgiFormStringNoNewlines("N_MASK", buff, 16);
if (value2 != cgiFormEmpty) convert_address (buff, cfg.system.mask);
value2 = cgiFormStringNoNewlines("N_GW", buff, 16);
if (value2 != cgiFormEmpty) convert_address (buff, cfg.system.gateway);
value2 = cgiFormStringNoNewlines("N_DNS", buff, 16);
if (value2 != cgiFormEmpty) convert_address (buff, cfg.system.dns);
cgiFormInteger("N_TELNET", &value, cfg.system.telnet_server);
cfg.system.telnet_server = value;
cgiFormInteger("N_WEB", &value, cfg.system.web_server);
cfg.system.web_server = value;
```


Chapter 9. Appendix

This chapter explains how to recover Eddy when flash of Eddy is damaged and it cannot be booted.

9.1 System recovery via Bootloader

Even if the flash in the user area has been damaged, it does not affect system booting. But if the system continuously reboots due to user program failure, or if the system is inaccessible as a result of wrong IP setting, you have to change the system to factory default status.

You can reload firmware from bootloader to change the system to default status. In order to do this, TFTP server has to be installed at the computer with Linux environment.

Note:

Once the bootloader is damaged, it cannot be recovered. Therefore user should not use command other than ones provided from manual.

9.1.1 Installing TFTP in Linux environment

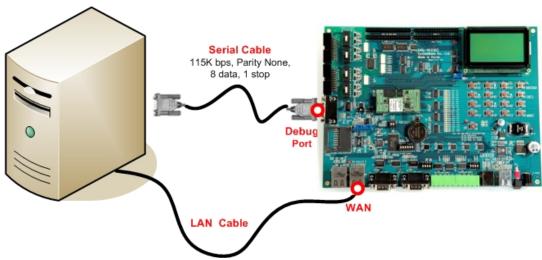
The following explains how to recover system with bootloader in Fedora core 5 operating system.

If you are using other operating system, you will need tftp-server and xinetd daemon compatible with that operating system.

First check to make sure tftp-server is installed.

If you don't install tftp-server, you should install.

After install tftp-server, move provided firmware (firmware folder in SDK folder) to tftpboot folder (usually /tftpboot folder in Fedora core 5).



9.1.2 Hardware Install and Recovery

Connect LAN port of computer and that of DK board using LAN cable.

Connect debug port and computer's serial cable using serial cross cable and use minicom to connect to computer's serial port. Configure computer's serial port setting to 115200 bps, 8 data bit, No parity, 1 stop bit and power on Eddy DK.

After power on the following messages will be printed to minicom.

When these are printed, press enter to enter into bootloader. The below image shows status after entering bootloader.

NAND: 256 MB

Macb0: Autonegotiation complete

Macb0: link up, 100 Mbps full-duplex (lpa: 0x45e1)

Hit any key to stop autoboot: 0

U-Boot⟩ U-Boot⟩

You can recover by copying OS, firmware, and config image to flash memory in bootloader.

To upgrade OS, firmware, and config image file, you have to configure Eddy's virtual IP address and TFTP server's IP address in bootloader.

You can use "printenv" command to check the current configuration of Eddy and TFTP server's IP address configured in bootloader.


```
U-Boot⟩ printenv
.
. ethaddr=00:05:F4:11:22:33
Config_Size=10000
stdin=serial
stdout=serial
stderr=serial
OS_Size==20000000
filesize=1f0f07
fileaddr=20000000
netmask=255,255,255,0
ipaddr=192,168,0,223 ← IP Address of Eddy
serverip=192,168,0,220 ← IP Address of TFTP server
FileSystem_Size=0
.
.
U-Boot⟩
```

To change Eddy's temporary IP address and TFTP server's IP address proceed as follows.

```
U-Boot〉 setenv serverip 〈TFTP server IP address〉
U-Boot〉 setenv ipaddr 〈Eddy IP address〉
U-Boot〉
```

Once the IP information is confirmed start recovery.

```
install bootloader (name of bootloader firmware); When recovering bootloader area (Note: If the bootloader was damaged, it could not be recovered.)
install os (name of OS firmware); When recovering OS area install fs (name of File System firmware); When recovering File System area
```


Proceed as follows and it will recover by downloading image file from TFTP server configured. The next shows OS recovery procedure.

The next shows file system recovery procedure.

Once the recovery is done, use "boot" command start booting.

```
U-Boot) boot
```

9.1.3 Solving problems during recovery

```
U-Boot) install os eddy-os-21,1,x,x,bin
TFTP from server 192,168,0,220; our IP address is 192,168,0,223
Filename 'eddy-os-21,1,x,x,bin'.
Load address: 0x20000000
Loading: ......
```

When recovery is not proceeded with message shown above, check WAN connection and confirm the IP address of

tftp-server PC is configured as 192,168,0,220. (This server IP address is just example, so it can be differ with user tftp-server PC IP address)

U-Boot install fs eddy-fs-2,1,x,x,bin

TFTP from server 192,168,0,220; our IP address is 192,168,0,223

Filename 'eddy-fs-2_1_x_x_bin'. Load address: 0x20000000

Loading

TFTP error: 'File not found' (1)

Starting again

When recovery is not proceeded with message shown above, check firmware version information or name is correct. The red name above has to be same with firmware name of PC with tftp-server installed.

U-Boot) install os eddy-os-21,x,x,bin

TFTP from server 192.168.0.220; our IP address is 192.168.0.223

Filename 'eddy-os-2.1.x.x.bin'. Load address: 0x20000000

When recovery is not proceeded with message shown above, it means there is product with same MAC address or IP in the network. Check whether there are other Eddy products in the same network.

9.2 System recovery via USB

Even if the flash in the user area has been damaged, it does not affect system booting. But if the system continuously reboots due to user program failure, or if the system is inaccessible as a result of wrong IP setting, you have to change the system to factory default status. You can reload firmware via USB to change the system to default status.

9,2,1 System recovery preparation via USB

Please refer to the follows because the installation procedures of Eddy-CPU v2.1 and Eddy-CPU v2.5 differ.

Eddy-CPU v2.1

Copy Eddy-CPU_v21_USB_Recovery_zip file to any directory (e.g. C:\SystemBase\USB_recovery) from SDK\Windows\USB_recovery directory in Eddy DK CD.


Double-click "AT91-ISP exe" file and begin the installation process of USB Tool program, then click Next

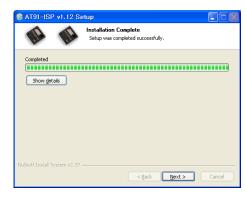
On the splash screen, click I Agree.

Browse to the following directory, then click Next.

C:\ProgramFiles\ATMELCorporation\ AT91-ISP v1.12

Click Install.

Choose Start Menu Folder
Choose Start Menu Folder
Choose a Start Menu Folder for the AT91-ISP v1.12 shortcuts.


Select the Start Menu folder in which you would like to create the program's shortcuts. You can also enter a name to create a new folder.

ATMEL Corporation WAT91-ISP v1.12

기원 무리 도구
보고로 함
생길
이스트소프로 함
생길
이스트소프로 함
생길
이스트소프트 Acrosoft
Coople 크롬
Soople Toffice for Menorsoft Office for Menorsoft Office for Menorsoft Office for Sprivate Doctor

Mulsoft Install System v2.37

Click Next.

If you want to create Shortcuts, check

Desktop or Quick Launch Bar, then click Next.

- Check Reboot now then click Finish. After system reboot, copy the "isp-extramat91sam9260.bin" file from CD to the following directory: C:\Program Files\ATMEL
Corporation\ AT91-ISP v1.12\SAM-BA v2.8\lib
\ AT91SAM9260-EK After installing the "AT91-ISP.exe" file, prepare to install the Eddy
-DK v2.1 board driver.

Prepare firmware files and flash writing utility programs as follows.

 Copy usb_recovery_xxx.zip file to any directory (e.g. C:\SystemBase\USB_recovery) from SDK\Windows\USB_recovery directory in Eddy DK CD. (Refer to the Eddy official community site http://www.embeddedmodule.com)

- 2) Among files extracted **copy isp-extram-at91sam9260.bin** file to the below directory. **C:/Program** Files/ATMEL Corporation/AT91-ISP v1.12/SAM-BA v2.8/lib/AT91SAM9260-EK
- 3) Among files extracted copy below listed files to the firmware directory in DK source code directory. eddy-bl-2.1.x.x.bin (Boot Loader) eddy-bs-2.1.x.x.bin (Boot Strap File Name) eddy-os-2.1.x.x.bin (Kernel File Name) eddy-fs-2.1.x.x.bin (File System File Name)
- 4) Among files extracted Eddy_burning_DataFlash_bat file performs transferring firmware to Eddy-DK board by executing a TCL file then creates a log file. In this file eddy-bl-2_1_x_x_bin file name should be same with the name of the file copied.

```
sam-ba\_exe \addy\_bl-2.1\_x\_x\_bin \addy\_bl-2.1\_x\_bin \addy\_bl-2.1\_x\_bin
```

5) Among files extracted Eddy_burning_DataFlash_tcl file performs transferring firmware to Eddy DK v2_1 board. In this file eddy-bs-2_1_x_x_bin, eddy-os-2_1_x_x_bin, and eddy-fs-2_1_x_x_bin file names should be same with the names of the files copied.

Eddy-CPU v2.5

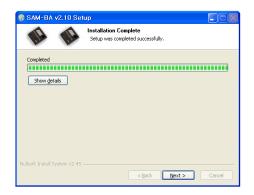
Copy Eddy-CPU_v25_USB_Recovery.zip file to any directory (e.g. C:\SystemBase\USB_recovery) from SDK\Windows\USB_recovery directory in Eddy DK CD.

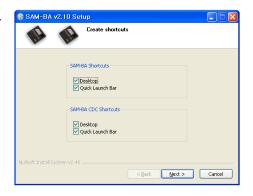
Double-click "Sam-ba_2.10.exe" file and begin the installation process of USB Tool program, then click Next.

- On the splash screen, click I Agree.

- Click Next.

Browse to the following directory, then click Next.
 C:\ProgramFiles\ATMELCorporation\
 SAM-BA v2.10




- Click Install

- Click Next.

 If you want to create Shortcuts, check Desktop or Quick Launch Bar, then click Next...

- Check Reboot now then click Finish.

Prepare firmware files and flash writing utility programs as follows.

- 1) Copy usb_recovery_xxx.zip file to any directory (e.g. C:\SystemBase\USB_recovery) from SDK\Windows\USB_recovery directory in Eddy DK CD. (Refer to the Eddy official community site http://www.embeddedmodule.com)
- 2) Among files extracted copy at91sam9g20-ek,tcl & isp-serialflash-at91sam9g20_bin file to the below directory.

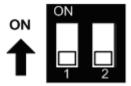
 C:\Program Files\ATMEL Corporation\SAM-BA v2_10\tcl_lib\at91sam9g20-ek.
- 3) Among files extracted copy below listed files to the firmware directory in DK source code directory.

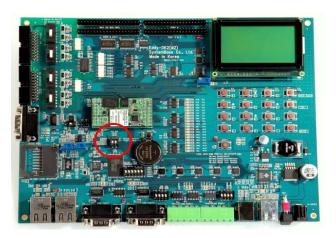
```
eddy-bl-2,5,x,x,bin (Boot Loader)
eddy-bs-2,5,x,x,bin (Boot Strap File Name)
eddy-os-2,5,x,x,bin (Kernel File Name)
eddy-fs-2,5,x,x,bin (File System File Name)
```

4) Among files extracted Eddy_burning_SerialFlash_bat file performs transferring firmware to Eddy-DK board by executing a TCL file then creates a log file. In this file eddy-bl-2.5.x.x.bin file name & Eddy_burning_SerialFlash,tcl file name should be same with the name of the file copied.

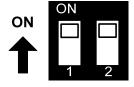
```
sam-ba_exe \usb\ARM0 AT91SAM9G20-EK Eddy_burning_SerialFlash_tcl / eddy-bl-2_5_x_x_bin > logfile_log notepad logfile_log
```

5) Among files extracted Eddy_burning_SerialFlash.tcl file performs transferring firmware to Eddy DK v2.1 board. In this file eddy-bs-2.5.x.x.bin, eddy-os-2.5.x.x.bin, and eddy-fs-2.5.x.x.bin file names should be same with the names of the files copied.

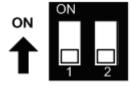




9.2.2 Installing Eddy DK Board Driver

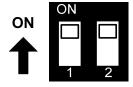

To detect the Eddy-DK board via USB you need to install the Eddy-DK board driver for Windows as follows.

- 1) Turn off Eddy-DK board.
- 2) Connect USB cable to both the Eddy-DK board and PC.
- 3) Set USB as a standby mode by pulling the right side switch down from the S6 dip switch on the Eddy-DK board.



- 4) Turn on Eddy-DK board.
- 5) If Eddy-DK board is recognized on your PC, maybe a dialogue box will be pop-up for installing new hardware. Choose the recommended mode install the software automatically then click Next.
- 6) Click Continue Anyway to proceed with installation.
- 7) Complete the found task, Click Finish to successfully install the driver.
- 8) Pull up both of S6 Dip switch on Eddy DK v2.1 board.

9,2,3 System recovery execution via USB


- 1) Turn off Eddy-DK board.
- 2) Connect USB cable to both the Eddy-DK board and PC.
- 3) Set USB as a standby mode by pulling the right side switch down from the S6 dip switch on the Eddy-DK board.

- 4) Turn on Eddy-DK board.
- 5) After 5 seconds change flash writing mode by pulling up both of S6 Dip switch on Eddy-DK board.

- 6) Start upgrade by double-clicking Eddy_burning_SerialFlash_bat file. You need to wait some time for seeing the log File after executing the batch file.
- 7) With the successful log message as below you can check the result of the upgrade. If you cannot see the successful log message, you can refer to next chapter to fix the problem.

```
...
u-boot file: eddy-bl-2,x,x,x,bin
...
-l- === Load the bootstrap: xxxxflash_at91sam9xxxek in the first sector ===
GENERIC::SendFile /eddy-bs-2,x,x,x,bin at address 0x0
...
```

8) With the successful log message, confirm whether the new firmware works properly or not by rebooting Eddy DK v2.1 board.

9.2.4 Solving problems during System recovery execution via USB

If you use firmware file name wrongly, log file will pop up as below in this case, you should check whether the file names of firmware copied is same with the firmware names in Eddy_burning_xxxxFlash bat or Eddy_burning_xxxxFlash tcl files.

```
script file: Eddy_burning_xxxxFlash.tcl
u-boot file: eddy-bl-2,x,x,x,bin

-E- Script File Eddy_burning_xxxxFlash.tcl returned error: could not read "eddy-bl-2,x,x,x,bin": no such file or directory - could not read "eddy-bl-2,x,x,x,bin": no such file or directory

while executing

"file size $ubootFileName"
invoked from within
```


2) If your PC connects to Eddy-DK board wrongly, log file will pop up as below. In this case, you need to check the connection.

```
-I- Waiting ...
-E- Connection \usb\ARM0 not found
-E- Connection list : COM2 COM3 COM4 COM5
```

3) If you get as below log file, you need to check the S6 dip switch. It should be pulled up.

```
-I- Loading applet isp-dataflash-at91sam9g20,bin at address 0x20000000

-E- Script File Eddy_burning_DataFlash,tcl returned error: Error Initializing xxxxFlash Applet

(Can't detect known device) - Error Initializing xxxxFlash Applet (Can't detect known device)

while executing

"error "Error Initializing xxxxFlash Applet ($dummy_err)""

(procedure "xxxxFLASH::Init" line 13)

invoked from within

"xxxxxFLASH::Init 1"
```


9.3 Product Specification

9.3.1 Eddy CPU v2.1 Specifications

Item	Classification	Specification	
		Eddy-CPU v2.1	Eddy-CPU v2.5
	CPU	ARM926EJ-S (210 MHz)	AT91SAM9G20 (400 MHz)
	Memory	8MB Data Flash, 32 MB SDRAM	
	External I/F	19 Bit / 16 Bit Data Bus	
	Ethernet I/F	10/100 Base-T Auto MDI/MDIX	
	UARTs	4 Port, Support up to 921.6 Kbps (1: Full Signal, 2,3,4,: RxD, TxD, RTS, CTS only)	
	USB 2.0 FS	2 Host /1 Device Port, 2.0 FS (12Mbps)	
Hwrdware	ADC	4-Channel 10 Bit ADC	
	TWI(I2C)	Master, Multi-Master and Slave	Mode
	SPI	8- to 16-bit Programmable Data Length Four External Peripheral Chip Selects	
	GPIO	Max. 56 Programmable I/O Pins	
	Power Input	3.3 V (200 mA Max)	
	Dimensions	25 x 48.5 x 6.2 mm	
	Weight	8.3 g	
	Protocol	TCP, UDP, Telnet, ICMP, DHCP,	, TFTP, HTTP, SNMP 1&2, SSH, SSL
Network	Ethernet	10/100Mbps MAC / PHY	
	Network Connection	Static IP, DHCP	
	O/S	Linux Kernel 2,6,21	
Software	Mgt Tools	SNMP, Web, PortView	
Software	Uploads	TFTP, FTP, Web	
	Dev Tools	LemonIDE & SDK	
	Operating Temp	-40 ~ 85 ℃	
Environmental	Storage Temp	-60 ~ 150 ℃	
	Humidity	5 ~ 95% Non-Condensing	
Approvals	CE Class A, FCC Class A, RoHS compliant	CE FC	ROHS ROHS Compliant

9.3.2 Eddy DK v2.1 Specificatons

Classification	Specification	
NAND Flash	256MB, 8bit I/F	
SD Card	Push Type, Up to 16 GB	
Connector	MMC / SD Card / MC supported	
USB Connector	1 x Device	
USB Connector	2 x HOST, Dual-Port	
LCD Module	128 x 64 Dots Matrix Structure	
KEY	4 x 4 Matrix	
Battery Holder	3V Lithium Battery, 235 mAh	
LED	Power, Ready, 20 Programmable IO, Console & Serial TxD, RxD	
I2C Interface	16bit I2C BUS GPIO	
SPI Interface	2 Kbit EEPROM	
MCI Interface	SD Card, MMC Socket	
ADC Interface	Temp / Light Sensor	
Digital I/O	8 Port Input, 8 Port Output	
	- Serial or GPIO Select	
Switch	- RS422/485 Select	
Switch	- DIO : Common VCC or GND Select	
	- Programming	
Jumper Switch	Boot Mode Select, JTAG Select	
	2 x RS232 DB9 Male	
Serial Port	2 x RS422/485 Terminal Block	
	(RS422 & RS485 Selected by S/W)	
Console Port	DB9 Male	
LAN Port	2 x RJ45	
ICE Port	Used for Flash Programming	
Reset Button	Factory Default & Warm Boot	
Input Power	9-48VDC	
Dimensions	240 x 180 mm	

9.3.3 Eddy-S4M v2.1 Specifications

	Classification	Specification	
	CPU	ARM9260B-CJ (210 MHz)	
	Momony	AT45DB642D, 8MB Data Flash	
	Memory	IS42S16160B, 32 MB SDRAM	
	Ethernet MC/PHY	10/100 Base-T MAC	
	Ethernet MC/PH1	KSZ8041NLi PHYceiver Auto MDI/MDIX	
		Port 0,1 : RS232 (DB9 male)	
		Port 0 : Full Signal	
	Serials	Port 1 : TxD, RxD, RTS, CTS only	
		Port 2,3 : COMBO (Terminal Block 5pin)	
		* COMBO : RS422/RS485 is S/W selectable	
	USB 2.0 FS	3 Host /1 Device Port, 2.0 FS (12Mbps)	
Hardware	030 2,013	Extension Port using GL850A USB Hub chip	
Tialuwale	RTC	Real Time Clock, RTC DS1340U-33+	
	NIC	Connected to I2C I/F	
	Battery Holder	CR1220(38mAh) 3V Lithium Battery	
	ADC	4-Channel 10 Bit ADC	
	TWI(I2C)	Master, Multi-Master and Slave Mode	
	0.71	8 to 16-bit Programmable Data Length	
	SPI	Four External Peripheral Chip Selects	
	1401	SD Spec V2.0 [SDHC], MMC Spec V4.2 support	
	MCI	USB to SD Controller , 16GB, 12Mbits/s	
	GPIO	Max. 34 Programmable I/O Pins	
	LED	Ready LED	
	Protocol	TCP, UDP, Telnet, ICMP, DHCP, TFTP, HTTP,	
		SNMP1&2, SSH, SSL	
	Network Connection	Static IP, DHCP	
Software	O/S	Linux Kernel 2,6,21	
	Mgt Tools	SNMP, Web, PortView	
	Uploads	TFTP, FTP, Web	
	Dev Tools	LemonIDE & SDK	
Dhysical	Power Input	3.3 V (200mA Max)	
Physical characteristics	Dimensions	59.75 x 61.80 x 4 mm	
	Weight	15 g	
	Operating Temp	-40 ~ 85° C	
Environment	Storage Temp	-66 ~ 150° C	
	Humidity	5 ~ 95% Non-Condensing	
CE Class A, FCC Class A, RoHS compliant	CE FO	C ROHS ROHS Compliant	

9.3.4 Eddy-S4M-DK v2.1 Specifcatons

Classification	Specification	
Serial Port	2 x RS232 DB9 Male	
	2 x RS422/485 5pin Terminal Block (S/W Selectable & with Auto toggle)	
SD Card Connector	Push Type, Up to 16 GB	
3D Card Connector	MMC / SD Card / MC supported	
MCI Interface	SD Card, MMC Socket	
ADC Interface	Light Sensor	
USB Connector	1 x Device, 2 x HOST, Dual-Port	
LAN Port	RJ45 with transformer	
Console Port	DB9 Male	
	Power ON/Off switch	
Switch	Serial RS422/485 Termination resistor configuration switch	
	Input switch for testing GPIO (Off : Low, ON : High)	
LED	RDY, Power, 34 Programmable IO, Console & Serial TxD, RxD LED	
JTAG Port	Used for downloading code and single-stepping through programs	
Reset Button	Factory Default & Warm Boot	
neset button	(If you posh more than 5, active Factory default)	
JIG connection	0.0v00nin appliet which assumed HO beautite confirm much land	
socket	2 2x23pin socket, which connect JIG board to confirm problems	
Expansion Header	2x22pin Header, used to test GPIO of Eddy-S4M	
Input Power	5 VDC	
Dimensions	160 x 120 mm	

9.3.5 Eddy-S4M-JIG v2.1 Specifications

Classification	Specification
USB Connector	USB HOST
LAN Port	RJ45
Reset Button	Factory Default & Warm Boot
Expansion Header	2 2x23pin, used to connect most functions of S4M to externalS4M
Input Power	5 VDC
Dimensions	70 x 105 mm

9.3.6 Eddy-WiFi v2.1 Specifcatons

Classification	Specification	
Standard	802.11b, 802.11g	
Modulation	802.11g: OFDM 802.11b: CCK,DQPSK, DBPSK	
Frequency Band	802 _. 11b/g:ISM band 2 _. 4GHz ~ 2 _. 4884GHz	
Output Power	802.11g: 14 dBm 802.11b: 17 dBm	
RX sensitivity	802 _. 11g: -68m @54Mbps 8% PER 802 _. 11b: -85dBm @11Mbps 8% PER	
Security	WEP 64/128, WPA, WPA2	
Working distance	60 - 120m, depending on surrounding environment	
Data Rate	802.11b : 11, 5.5, 2, 1 Mbps 802.11g : 54, 48, 36, 24,18,12,11, 9, 6, 5.5, 2 , 1 Mbps	
Power consumption	TX: 450mA, RX: 300mA	
Host interface	USB2.0	
Antenna	ANT 2.4Ghz, 2DB RP-SMA Female	
Antenna Cable	RF 100mm SMA B/H	
Dimension	54 x 25 x 6mm	
Operating Temp	0 ~ 55° C	
Humidity	5 ~ 90% Non-Condensing	
Operating Voltages	3.3V±5%	
Weight	10g	
Approvals	CE Class A, FCC Class A, RoHS Compliant	

9.3.7 Eddy-BT v2.1 Specifcatons

Classification	Specification		
Interface	Bluetooth v2 _. 0+ EDR Class 1		
Profile	SPP (Serial Port Profile)		
Max, TX Power	+18dBm		
RX sensitivity	-88dBm		
Power	Supply voltage: 3,3V DC Supply current::10mA 60mA		
Operating Temp	Operating temperature: -30 ~ 80 °C		
Storage Temp	Storage temperature: -40 ~ 85 °C		
Humidity	Humidity: 90% (Non-condensing)		
Working distance	Stub Antenna (+1dBi) - Stub Antenna (+1dBi) Stub Antenna (+1dBi) - Dipole Antenna (+3dBi) Dipole Antenna (+3dBi) - Dipole Antenna (+3dBi) Dipole Antenna (+3dBi) - Dipole Antenna (+5dBi) Dipole Antenna (+3dBi) - Patch Antenna (+9dBi) Dipole Antenna (+5dBi) - Dipole Antenna (+9dBi) Dipole Antenna (+5dBi) - Patch Antenna (+9dBi) Patch Antenna (+9dBi) - Patch Antenna (+9dBi)	100 meters 150 meters 200 meters 300 meters 500 meters 400 meters 600 meters 1,000 meters	
Approvals	CE Class A, FCC Class A, RoHS Compliant	•	

9.4 Ordering Infomation

Product	Version	Descriotion
Eddy-CPU	2.1	Embedded CPU Module
Eddy-CPU	2,5	Embedded CPU Module
Eddy-DK	2,1	Eddy V2.1 Development Kit
Eddy-S4M	2,1	Embedded CPU Module (Mini PCI Type)
Eddy-S4M-DK	2,1	Eddy-S4M v2.1 Development Kit
Eddy-S4M-JIG	2,1	Eddy-S4M v2.1 JIG Board
Eddy-WiFi	2,1	802 _. 11 b/g WiFi Module
Eddy-BT	2,1	Bluetooth 2,0 Class 1

